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where A is a constant such that

/ n \-(®3o-l/X)/(l-»3o)

0 < A <(r cosx —J (29)

throughout the flow region considered. The lines in the r, 6 plane on which r cosx (9/\v0)
is equal to a constant (for fixed v0) are the streamlines of the field (26). Therefore, for
vl < 1/X the innermost streamline in the region considered fixes the upper bound on
A, and it is clear that the line 6 = \vair/2 must be excluded. For v\ > 1/X the point
r = ra is the critical one in bounding A; only a finite part of the plane can be taken as
the region considered.
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ON HEAT TRANSFER PROBLEMS IN VISCOUS FLOW*
By G. F. CARRIER and J. A. LEWIS (Brown University)

1. Summary. Many problems of physical interest which are associated with the
flow of a viscous fluid through a narrow channel require the determination of the tem-
perature distribution throughout the field of flow. In general, such problems may be
separated into one of three classifications. The first of these is characterized by the
existence of a thermal boundary layer, the second by a temperature distribution in-
dependent of the coordinate across the channel, and the third by an intermediate type

*Received March 7, 1949.
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of temperature distribution. In the present paper a simple method for the classification
of such problems is given, and techniques for solving some of the problems which arise
in practice are discussed.

2. The general equations. We shall consider the two-dimensional flow of an incom-
pressible fluid with constant viscosity and heat conductivity. The equations governing
this flow may be written

p(uux + vuy) = — px + Mm, (1)

p(uvx + vvy) = —py + nAv, (2)

ux + vy = 0, (3)

where u, v are the velocity components in the x, y directions, respectively, p is the pres-
sure, p the density, n the viscosity, and A the Laplacian operator.

To determine the temperature distribution, we also introduce the energy equation

pc(uTx + vTv) = kAT + p\2 u2x + 2 v\ + (uy + vx)2], (4)

where k is the heat conductivity coefficient, c the heat capacity, and T the absolute
temperature.

3. Channel flow. We shall consider the flow of a viscous, heat-conducting fluid
through a channel bounded by smooth walls of small curvature, which may be moving
or stationary. Then Eqs. (1), (2), (3), and (4) may be replaced by a simplified set of
equations, which are obtained here by making certain physically plausible assumptions
concerning the nature of the flow. We assume that u ~S> v, px pu, and that the Reynolds
number of the flow is such that the inertia terms in the equations of motion are very
small. Under these assumptions the general equations can be replaced by the approximate
relations1

/.

P-Uvv = px = p'(x), (5)

t a

u(x, y) dy = const., (6)

kTvy — pcuTx + nuv = 0, (7)

where — ii(x) and t2(x) are the coordinates of the upper and lower boundaries. Typical
boundary conditions2 are

!A crude analysis will show that the term pcvTy is of the same order as pcuTx . However, since the
channel is assumed to be bounded by walls of small curvature, the streamlines of the flow will practically
coincide with the lines y = const. Therefore v will be taken to be zero to the order of approximation
considered here. An equation having the general form of Eq. (7) may be obtained also by a suitable
change of variable. For example, in the doctoral thesis of M. Finston (Brown Univ.) the details of this
variable change for a specific problem are given and it is shown that the approximation used here is
valid.

2In general T{0, y) is given only roughly for the following reason: the wall effects near the entrance
imply a modification of the upstream temperature distribution via conduction and thus, at any given
section, T cannot be specified a priori.
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u(x, —<i) = C/i ,

u(x, Q = C/2,

Pinut = const.,

T(0, y) = const. = T0 ,

T(x, —ti) = T{x, t2) = const. = Tw or

(Ty)y ,, = (1Ty)y.t, = COnSt.

It is evident from the form of Eq. (5) that the velocity distribution at any section
(i.e., at fixed x) is parabolic. That this is the velocity profile one obtains in such problems
is well-known. Thus we need consider only Eq. (7) with its associated boundary condi-
tions and regard the velocity u as known.

It is convenient to make the definitions3

£ = x/L,

1 = [2y + ti(x) - t2(x)]/[t2(x) + h{x)],

e = kL/pcUoto ,

6 = (T — To)pctl/nUoL,
where L is the length of the passage, t0 the minimum half-width of the channel, and
U0 the maximum velocity at the section of minimum area. Equation (7) then becomes
(to our order of approximation)

ed„ - [(1 - v2)m + u2( 1 + ,)/2 + 1 - v)/2]e(
(8)

+ (U, -Ua- 4??/)2/4 = 0,

where /(£) is determined (in terms of p'(x), t2(x), and ti{x)) from Eqs. (5) and (6).
4. The characteristic parameter e. Let us now examine Eq. (8) with regard to the

quantity e, which depends upon the material properties of the fluid, the velocity of
flow, and the geometry of the channel.

If e 1, Eq. (8) may be replaced by the approximate relation

en = o.
This implies that the temperature distribution across the channel, for e 1, is inde-
pendent of rj. There will, of course, be a thin transition region near the inlet where
this is not true, but to the order of our approximation we can consider the temperature
distribution independent of the coordinate across the channel in this case.

When e is of order one, it is more difficult to compute the temperature distribution,
since now all the terms in the differential equation are of the same order. However, it
is still required that the temperature distribution should change smoothly as the fluid
progresses down the channel. Thus a numerical procedure can be employed with reason-
able efficiency to obtain the temperature distribution for any particular problem. An
example of this type of problem is the flow of lubricating oil through a bearing.4 The

3The definition of 11 is chosen to give 17 = ± 1 at the passage walls.
4For a particular lubrication problem, it was found that e = 4.
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usual assumption of constant temperature across the oil film is not exactly satisfied;
however, probably little error will result in any practical case where this assumption
is made

When the heat conductivity of the fluid is small, the velocity of flow large, and the
channel not too narrow, we will have e <5C 1. In this case we might expect that the first
term of Eq. (8) could be neglected. However, if this is done, the solution found will
never obey all the boundary conditions and in many cases will be singular at the walls.
Hence, we must expect that the conductivity will play an important role near the walls.
We shall anticipate that there will be a thermal boundary layer whose thickness is of
order t0em in which the temperature will vary rapidly from its value at the wall to its
value outside this layer. In the latter region the temperature is almost entirely governed
by the convective effects. From a crude dimensional analysis we might conclude that
m ~ 1/2. We shall see later, however, that the precise value of m depends upon the
boundary conditions imposed upon the velocity.

The solution of Eq. (8), with suitable boundary conditions, will be found as the
sum of two solutions—a solution of the homogeneous equation which takes special
account of the rapid variation of temperature near the walls and hence is a boundary
layer solution, and a particular solution of the original inhomogeneous equation. Let
us denote the boundary layer solution by 0i and the particular solution by 6a. In general,
the inhomogeneous solution will describe the convective contribution to the temperature
field, whereas the homogeneous solution will describe the boundary layer effect. How-
ever, when one or both of the passage walls is stationary, even the inhomogeneous
solution must be subdivided into convective and conductive parts, or else the solution
will be found to be composed of such complicated functions that computation becomes
impractical. This will be seen in the example at the end of the paper.

5. The boundary layer solution. To obtain the boundary layer solution, we consider
the homogeneous equation

«(0i)™ — y)(9i)( = o, (9)
where F(£, -q) is defined in Eq. (8). The flow near each wall is treated by itself, and the
two boundary layer solutions thus found are combined to give a smooth fit at the middle
of the channel. For example, suppose we consider the thermal boundary layer at the
lower wall (i.e., at i? ~ —1). We set

r = („ + i)Am,

and choose m so that the convective and conductive terms arising from Eq. (9) under
this substitution are of the same order in e. If only the terms of the lowest order are
retained, F may be written in the simplified form

F = U, + e'"f[2/(£) + (U2 - Ui)/2].
If the wall is stationary, Ux = 0. If it is moving, lh will be the dominant term near
the wall and the term in tm can be neglected. In the first case we choose m — 1/3 and
in the second m = 1/2. Then Eq. (9) has the form (with p and q known functions of £)

(*iht ~ fPWf = 0, (10a)
if the wall is stationary, and

(0i)n - g(0ih = 0, (10b)
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if the wall is moving. These equations may be reduced to a simpler form by the trans-
formations

" / p(0'

« = / At

to the forms

(ffi)rr - f(fli). = 0, (11a)

(«.)rr - («0a = 0. (lib)

The function must now satisfy boundary conditions of the following type:

61 = 0, for a = 0 (at the inlet);

0i —* 0, as f —> oo (at the middle of the channel);

0! = G(a), for f = 0,

where G is chosen so that 0O + 0t satisfies the original boundary condition at the wall.
The problem given at the end of the paper exemplifies the simple method of obtaining
the boundary layer solutions by the application of the Laplace transform.

The determination of a particular solution depends so much upon the form of Eq.
(8) in a particular problem that few statements can be made, in general, as to its form.
In many cases it may be found by reducing the partial differential equation thus found
to an ordinary differential equation by an appropriate change of variable.5

6. The flow between two parallel walls. To illustrate the method of solution when
« « 1, we shall compute the temperature distribution in the flow of a viscous fluid
between two parallel, stationary walls. The temperature of the fluid at the inlet will
be taken as T0 (although, as previously noted, this boundary condition will not be
satisfied exactly), and the temperature of the wall will be taken as fixed at a value
Tw . In this case, the function F has the form

v) = 1 — v,

and Eq. (8) becomes6 (rigorously in this example)

- (1 - + 4rj2 = 0. (12)

By inspection, a particular solution of Eq. (12) is seen to be —if/Ze. This solution,
however, does not yield the proper behavior in the interior of the channel, where con-
vection and dissipation are the dominant effects. The above solution takes into account
conduction and dissipation, the effects of which are dominant only near the walls. We
seek a solution which is of the order e"1/3 at the walls and which tends to zero at the

5See, for example, M. Finston, Doctoral thesis, Brown Univ. (forthcoming).
6We note here that the exact solution of this problem could be expressed as an infinite series of

certain integrals of Whittaker functions, but this fact is obviously of academic interest only.
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middle of the channel. To find such a solution, we split the particular solution 0O into
two parts, 6* and 0**, satisfying the equations

60* - (1 - v2)ef = —4?)2(1 - r,2-2), (13a)

e0** - (1 - r,2)et* = -4„2', (13b)

where v is some large number. If now Eq. (13a) is replaced by the approximate relation

(1 - „2)0? = 4„2(1 - v2'-2),

0* will be given by the expression
1 2v — 2

e* = Hv -j—rL2-,
1 - 1)

which vanishes for j? = 0 and approaches the value 4 v £ for large v as rj approaches ±1.
If we had merely neglected the first term in Eq. (12) and then computed the corre-
sponding solution, we would have obtained a solution which becomes singular at rj = ±1.
This seemingly artificial device used above avoids this difficulty. To obtain a solution
of Eq. (13b) we set

fe-1/3(l + n), for —1^77 go,

[e~1/3(l - v), for 0 g 7? g 1.

If now we retain only the terms of lowest order in e, Eq. (13b) becomes

0?r* - 2f0f* = —4e~1/3(l - e~1/3f)2". (14)

Since e « 1, a convenient choice for v is 2v = «~1/3. It is known that

- A" = e-
2v)

lim 1

and thus, since we have assumed « very small (i.e., 2v very large), we may approximate
Eq. (14) by

6f* - 2f0f* = —4r1/3e"r. (15)

An obvious solution to this equation is

0** = — 4e_1/3e~r.

This solution tends to zero for large f(i.e., at the middle of the channel) and assumes
the value — 4€~1/3 at the wall. In terms of then the complete particular solution 0O
has the form

do = 4^2 (1 ~ %2) - 8^{e-2'c'+I> + e-2'cl-')},
U — V )

where 2v = This function takes on the approximate value 4v(£ — 2) at the walls
and exhibits the proper beiiavior at 17 = 0. Furthermore, it practically vanishes all
along the inlet section except near the walls.

To complete the determination of the temperature distribution, we must now obtain
a boundary layer solution, 61 , which satisfies

(0Off - 2f(0O? = 0, (16)
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and the boundary conditions

0) = 4i>(2 - Q + ew ,
«i(*, ®) = 0,

*i(0, f) ^ 0,
where 6W is the dimensionless wall temperature.
To obtain this solution, we set

0i(£, f) = f e l'g(t, f) d<,
Jo

i.e., we assume that 0X is the Laplace transform of some function g. Then g must satisfy
the differential equation

Qn(t, f) + 2[tg(t, f) = 0,
which has the solution

g = A {t) f (9t/2f3)1/6 J1/3 (2(2<f3/9)1/2) + B(t)(9t/2fy1/6J.1/3(2(2tf/9)1/2).

If A and 5 are taken as constants, the function 6i has the form,7

«i(€, f) = Afr4/3 exp ( —2f3/9i) + Bf2/3 exp (-2f3/9Q.

The first term may be written as

Att~i/3 exp (-2f3/9f) = 3A ~ [ exp (-2a3/9) da.

Equation (16) implies that if dx is a solution then (0l)l is also a solution and vice versa.
Hence P(£, £) is a solution, where

P(£, f) = w*2/3) / i/t exp ( —2a3/9) da.

The quantity r(2/3) is the Gamma function with argument 2/3. Note that P(f, 0) = 1.
It can easily be verified by direct differentiation that if P is a solution of Eq. (16), a
more general solution can be obtained by setting

0,(5, f) = f£ m - t)P(t, f) dr,

where X is an arbitrary function. In the example considered here we require that

6,(f, 0) = 4^(2 - ?) + 6„ ;
thus we set

K(& — t) = — 4y,
a constant, and is given by

0i(£, ?) = (0» + 8?)P(£, f) — 4j< f P(r, f) dr.
Jo

7R. V. Churchill, Modern operational mathematics in engineering, McGraw-Hill Co., New York,
1944, p. 299.
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In terms of r) then the first approximation to the temperature distribution in this ex-
ample has the form

0(S, v) = (0» + 8f) {•?[£, 2?(1 + 57)] + PR, 2v(l — ??)]}

— 4i> f {P[t, 2v(1 + 17)] + P[t, 2f(l — 77)]} dr
Jo

- 8v[e~2'a+v) + e-2*'1-"] + Hv 1 ~ v'\ 2
1 — rj

where 2v = e~1/3.

THE THICKNESS OF A SHOCK WAVE IN AIR*
By A. E. PUCKETT and H. J. STEWART (California Institute of Technology)

1. If the viscosity and heat conductivity of a gas are neglected, it is easy to show
that a one-dimensional supersonic flow of this gas may be interrupted by a discontinuity,
or shock wave, across which the velocity jumps to a subsonic value (see [1] and [2] f).
In a real gas, viscosity and heat conduction may be negligible through a large part
of a supersonic flow field but clearly must become important in the neighborhood of
the large velocity gradients associated with a shock wave. If these effects are considered
in the equations of motion, it is seen that the deceleration corresponding to the velocity
jump through a shock wave must actually occur in a finite, although short, distance.

The first theory of the thickness of a shock wave was given by Rayleigh [3] who
assumed that the fluid was a thermally and calorically perfect gas, that the viscosity
coefficient ju was constant and that the heat transfer coefficient X was zero. Taylor fl]
considered the effect of a constant, non-zero value of X by assuming that the velocity
jump across the shock wave was small compared with the local speed of sound. Becker
[4] noticed that a solution could be obtained without linearization in the special case that
the Prandtl number a = CPn/\ = 0.75, where CP is the specific heat at constant pressure.
In all of these investigations the physical constants, CP , yu and X, were considered to
be constant, and the linear (Navier-Stokes) theories of the viscous stress tensor and the
heat flux vector were used. All of these investigations showed the width of a shock wave
in air at normal conditions to be extremely small; for strong shock waves the width
was computed to be less than the molecular mean free path. In view of these results,
several writers (see [5] and [6]) have discussed the influence of deviations from thermo-
dynamic equilibrium and of the higher order, non-linear (Burnett) terms in the viscous
stress tensor and heat flux vector.

In the present note the problem of the width of a shock waVe in air is re-examined
using a thermally perfect gas and the linear (Navier-Stokes) theories of the viscous
stress tensor and the heat flux vector. It is found that the solution can be carried

*Received Dec. 13, 1948.
tNumbers in the brackets refer to the bibliography at the end of the paper.


