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A point of some interest is the fact that, as time goes on, the slope dT(x, t)/dx of
the curve of Eq. (5) does not increase without limit, but instead approaches an asymp-
totic value a/v, shown in Fig. 1. This asymptotic behavior may be seen by differentiating
Eq. (5) with respect to x, and then inserting the conditions ty> x/v and t » K/v2.
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DEGENERATE TWO-DIMENSIONAL NON-STEADY IRROTATIONAL FLOWS
OF A COMPRESSIBLE GAS*
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1. Introduction. A class of non-steady, two-dimensional, irrotational, compressible
flows which are very similar to steady, two-dimensional, irrotational, compressible
flows will be studied. In order to do this, we introduce the well-known potential equation
and Bernoulli relation for general non-steady flows. Our degenerate flows are defined
by requiring that two families of cylindrical characteristic surfaces (with generators
parallel to the time axis) exist in space-time. These flows have the following properties:
(1) the wave fronts are stationary; (2) each of the velocity components and the speed
of sound depends upon a single function of time multiplied by appropriate functions,
which we shall call "reduced" velocities, of the space variables; (3) the single function
of time is such that the motion decays as time increases. A canonical characteristic
system, consisting of five equations with five dependent variables (the reduced velocities
and the rectangular coordinates of the plane) and two independent variables, is ob-
tained. It is shown that simple waves do not exist. Finally, it is shown that a degenerate
non-steady flow, whose stream lines are logarithmic spirals, exists.

2. The system of flow equations and the potential equation. Let x~{\ = 1, 2)de-
note a rectangular Euclidean coordinate system in the physical plane, and let t denote
the time variable. If vx (X = 1, 2) denotes the components of the velocity vector in the
^-coordinate system, and p and c denote the density and local speed of sound, re-
spectively, then the equations of motion and the equation of continuity may be written
as

^ + v,djL + ldL o, (2.1)
dx* P dx

dp , dvx x dp _ , .
J7 + P ~Z~l + v Tx °- (2-2)dxx dx

In the above equations, the contravariant and covariant components of a vector are
equal since the coordinate system is Euclidean orthogonal. However, we have introduced
the notation of tensor analysis in order to use the summation convention.

*Received Jan. 31, 1949. This work was done under a University of Michigan contract with the
U. S. Army Air Forces.
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For irrotational motion, a velocity potential xx) exists such that

= % (2.3)
OX

Further, we shall define the time component of the generalized velocity to be

*=ft- <2-«
The integrability conditions for (2.3) and (2.4) are the irrotationality conditions

dvx _ chv dvx _ dvo
dx" dxx' dt qxx (2.5)

By substituting (2.5) into (2.1), we obtain the Bernoulli equation

2v0 + q2 + 2P = 0, (2.6)

where q2 = v\\ , and 4> has been chosen so that the right-hand side of (2.6) vanishes.
For adiabatic flows P is defined by

rp c2 c2
p =}-Pdp = ^-l> lA■ w

By differentiating (2.6) with respect to t, xx (where P is defined by 2.7) and substituting
into (2.2), (2.1), we obtain the desired potential equation

+ 2v" ^ = 0, (2.8)
at at Qx"

where ax" = v\" — c2gx" and is the metric tensor.
3. Degenerate flows. Let w(t, xx) = constant denote the equation of a family of

co1 characteristic surfaces. These loci satisfy the first order equation1

feY + 2vx ̂ -^x ̂  = 0. (3.1)
\dt/ dx dt dx dx"

If a flow possesses two families of characteristic surfaces which are cylinders with gene-
rators parallel to the time axis (that is, w is not a function of t), then the flow will be called
degenerate.

For degenerate flows, (3.1) reduces to

a^^ = 0. (3.2)
dxx dx" '

From this fact, it is easily verified that these flows have the following properties:
(1) they are always supersonic;
(2) the normal vectors to the two families of characteristic surfaces and the corre-

sponding bicharacteristic vectors are independent of time;
(3) the direction of the velocity vector and the Mach number are independent of

time; and
JR. Courant and D. Hilbert Methoden der mathematischen Physik, vol. II, Julius Springer, Berlin,

1937, p. 375.
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(4) if t?x, 'jjx denote the unit normal vectors to the two families of characteristic
surfaces and ix, 'tx denote the unit vectors of the corresponding bicharacteristic
curves, then

vx = C77x + (q2 - c2)1/2i\ (3.3)

«x = cV - (q2 - c2)1/2'<x. (3.4)

From property (2), we see that the wave fronts are stationary. In view of property
(3), we may write

vx = f(t)v\ c = Mc, (3.5)

where the barred quantities are the "reduced" velocities, etc., and depend only on the
variables xx. From (2.6), (2.7), it follows that

v0 = U(t)]\ • (3.6)

Substituting (3.5), (3.6) into (2.5), (2.8), we find that/(£) must be

'<» - ~w-b- (3-7)
where k, b are constants. Further (2.5), (2.8), (2.6), reduce to

& = % ^ = K* , (3.8)
dx" dxv dxx

-xM dv± 2Jc(v0 + q2) = 0, (3.9)
dx

2^o + q + ^ = 0. (3.10)

In our future work, we shall drop the bars over the "reduced velocities" etc, but shall
limit our considerations to the system (3.8) through (3.10).

4. The characteristic system for degenerate non-steady flows. In view of (3.8),
Eq. (3.9) is a quasi-linear partial differential equation of the second order. The char-
acteristic system for such an equation can be obtained immediately from H. Lewy's
work.2 Let a = constant, (3 = constant denote the traces of the two families of cylindrical
characteristic surfaces on the a;x-plane. In addition, in order to compare our results
with those of the steady case, we introduce the notation

x = x1, y = x2, u = v i = v1, v = v2 — v2. (4.1)

An application of Lewy's method (and a little algebra) furnishes the characteristic
system

2R. Courant and D. Hilbert, loc. cit., pp. 326-332.
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(u(q2 - c2)I/2 + cv) - (v(q2 - c2)1/2 - cm) || = 0, (4.2)

0»(ff2 - c2)1/2 - cv) g - (»(92 - c2)1/2 + cm) g = 0, (4.3)

m - cr + cu>% + m - or■ - »> %+| - o, (4.4)

- cY" - «) I + <«tf - + «) I + 1 = 0, (4.5)
dv0 , dx . dy „ ..T-2 - fat- faf = 0. (4.6)
da oa aa

The algebraic relation (3.10) must also be added to the system (4.2) through (4.6).
Somewhat different forms of (4.4), (4.5) can be obtained by solving (4.3), (4.6) for
dx/da, and (4.2) and the equation in (3 corresponding to (4.6) for dx/dfi. We find that

dx (u(q2 — c2)1/2 — cv) dv0 dx (u(q2 — c2)1/2 + cv) dv0 ,
da ~ kq\q2-c2)1/2 da' dp ~ kq\q2 - c2)l/2 dp'

When (4.7) are substituted into (4.4), (4.5), we obtain equations involving derivatives
of m, v, v0 . Further, if we introduce 6, the slope of the velocity vector

u — q cos 6, v — q sin 6, (4.8)

then (4.4), (4.5) become

,(5.-er-|$ + + <«>

M-cVg-rfli + w^t-o- <«°>
Simple waves, (that is, a family of straight line bicharacteristics, say /3 = constant,

along which m, v are constant) do not exist for degenerate non-steady flows. For if we
require u, v to be constant along a curve /3 = constant and the slope of (4.3) to be in-
dependent of a, then a differentiation shows that c must be constant along /3 = constant.
From (3.10), it follows that v0 is also constant along /3 = constant. Use of (4.5), shows
that q = 0 or v0 + q2 = 0 along curves of this family. Finally, equating the slopes ob-
tained from (4.6) with v0 constant and (4.3), we see that q = 0 or q = c. Hence q = 0
is the only common solution of our equations.

The case k = 0, v0 = constant, furnishes steady two-dimensional flow. Another case
of interest is when v0 + q is zero throughout the flow. From (3.10), it follows that such
a flow can exist only at the Mach number, M = 51/2. The Eqs. (4.9), (4.10) may be
integrated immediately. We obtain

q — ae~9 tan ", along a = constant, (4.11)

q = be9 ta° ", along (i = constant, (4.12)
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where co is the Mach angle for M = 5I/2 and a, b are arbitrary functions of a, fi, re-
spectively. The curves (4.11), (4.12) are logarithmic spirals in the liodograph plane.
For the case v0 + q2 = 0, the (x,?/)-plane map of the bicharacteristics a = constant
(or /3 = constant), is orthogonal to the («,t>)-plane map of /3 = constant (or a = con-
stant). Hence, the (x,y)-plane map of (4.11), (4.12) consists of logarithmic spirals. Specific
formulas can be obtained easily. Since the bicharacteristics are inclined to the stream
lines at the constant angle u, the stream lines are also logarithmic spirals. Evidently, a
similar method can be used to investigate those degenerate non-steady flows for which
v0 = f(q2), f(q ) < 0.

NOTE ON THE CHARACTERISTICS IN UNSTEADY
ONE-DIMENSIONAL FLOWS WITH HEAT ADDITION*

By C. C. LIN (Massachusetts Institute of Technology)

1. In a very interesting paper, Kahane and Lees1 studied the problem of one-
dimensional wave propagation in a gas when heat is being added. They used the method
of numerical integration, by taking finite differences along the characteristics. However,
since the form of the characteristic equations contained more than two dependent
variables, they were led to use some rather artificial approximations besides those in-
volved in taking finite differences. As the type of work done by Kahane and Lees will
probably be continued by people interested in jet propulsion, it seems desirable that
the most convenient form of the characteristic equations be derived and a simple pro-
cedure of numerical integration be developed. It is the purpose of this note to show
that with a proper choice of the dependent variables, the characteristic equations are
much simpler, and the numerical integration can be carried out in a straightforward
manner.2

2. The fundamental equations for one-dimensional unsteady flow are

u, + uux -\--px = 0, (1)
P

p( -f- upx -f- pux -f- puA 1AX = 0, (2)

s, + usx = q*, (3)

p = constant X pyes, (4)

where u is the velocity in the direction of the z-axis, A is the cross-sectional area of the
tube, t is the time, and p, p, s, y are the familiar symbols for the pressure, the density,
the entropy (divided by the specific heat at constant volume cv) and the ratio of specific

*Received March 21, 1949.
;A. Kahane and L. Lees, J. Aero. Sci. 15, 665-670 (1948).
2For further discussions of this problem, see a note by William Swartz, which is to appear in J. Aero.

Sci.


