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the analogue of the procedure. We consider the (n — l)-dimensional spaces Vki
(i = 1,2, • • • , n) through 0, whose equations are ^ aik%i = 0. When we take arbitrary-
values for the unknown quantities and correct them in the order xki , xk, , • ■ • , the
construction runs as follows. An arbitrary point P0 is chosen in n-space; I\ is the or-
thogonal projection of P0 on Vkl ; P2 is the projection of P1 On Vk, , etc. And so the pro-
cedure is illustrated in a simple geometrical way. We add some supplementary remarks.
The point Pm (rn > 0) lies always in one of the spaces Vk . These spaces are linearly
independent if | aik | ^ 0. At each step (after the first) one of the Vki is projected by
parallel projection onto the following one. In this way, an affine correspondence is
established between the two successive Vki , the modulus of the affinity being cos a,
where a is the angle between them. Thus the convergence of the procedure can easily
be proved, provided that the corrections take place in a fixed cyclic order xkl , xk, , • ■ ■ ,
xkn where kx , k2 , •••,&„ is a permutation of 1, 2, • • • , n.

If two successive Vki are perpendicular to each other, the projection of the first
onto the second coincides with their (n — 2)-dimensional space of intersection. It
follows, therefore, that if all the Vki are mutually perpendicular (that is, if the matrix
|| aik || is orthogonal), the point Pi lies on Vkl , P2 on the intersection of Vkl and Vkl ,
P3 on (Vkl , Vk, , VkJ and so on; hence P„ coincides with O. In this case the procedure
ends automatically after n steps.

A SIMPLIFIED METHOD OF DIFFERENTIATING AND EVALUATING
FUNCTIONS REPRESENTED BY FOURIER SERIES*

By A. M. WINSLOW (University of Washington)

1. Introduction. This paper shows how to eliminate the difficulties caused by discon-
tinuities of Fourier sine series at the ends of the interval of periodicity.

Applications of Fourier series to exact solutions of problems in mathematical physics
involve the following essential considerations. In an interval — a ;£ x ^ a, it is assumed
that a function f(x) and its successive derivatives up to some finite order j'm) (a;) all comply
with sufficient conditions of continuity, bounded variation, differentiability and in-
tegrability. They thus permit representation by Fourier series, which can be differentiated
to give the derivative of next higher order, and integrated to give an expression for the
derivative of next lower order.

When f(x) is an a;-odd function, and /(a) /( — a) 0, particular difficulties are
encountered. The corresponding Fourier sine series is discontinuous at a; = ±a and
does not conveniently represent the values of/(a) and/( — a). In addition, the derivative
f'(x) is represented by a complicated Fourier series which is not readily evaluated at
x — ±a. Thus

CO

f(x) = Z &nsin P„x, (1)
1

in which /3„ = nir/a. The expression for the derivative is

*Received March 28, 1949.



424 NOTES [Vol. VII, No. 4

/'(») = ^ [/(«) - /(-«)] + X) ~ /(_a)] + &^»} cos 0nx. (2)

2. Modification of Fourier sine series. These difficulties of evaluation and differentia-
tion are alleviated by rewriting Eq. (1) in the form

fix) = cx + ^ b'n sin I3nx — cxj, (3)

where c = f{a)/a. The last term of Eq. (3) may be written

cx = b" sin /3nz;
1

then
CO CO

X) K sin finx — cx = ^2 bn sin finx, (4)
1 1

in which bn = b'n — b".
In Eq. (4), bn sin (Snx represents a function having the value zero at x = ±a.

It consequently permits term wise differentiation.
Thus the original equation (1) is now

fix) = cx + X sin pnx. (la)
1

At x = ±a, fix) = ±ca, respectively. Also the derivative f'(x), correctly obtained by
termwise differentiation, is

CO

fix) = c + an cos pnx, (2a)
1

where an = brJ3„ .
In this manner, with complete generality, Eqs. (1) and (2) can always be rewritten

in the form of Eqs. (la) and (2a).
Furthermore, in the case of integration of an x-even function /'(x) expressed by

Eq. (2a), termwise integration is a legitimate process. If it is known that the indefinite
integral fix) is an z-odd function, there is no additional constant of integration, and
f(x) is expressed by Eq. (la), in which b„ = a,J. Also at x = dba, fix) = ±ca, re-
spectively. This follows from the fact that termwise differentiation of Eq. (la) gives
Eq. (2a). Therefore, y.r bn sin /3nx, complying with the necessary condition of termwise
differentiation, must represent a function having the value zero at x = ±a.

3. Derivatives of any finite order. More general results for a mixed function are
obtained by successive integrations of f(m)ix) with introduction of constants of inte-
gration. Thus

CO

f(m)ix) = c' + 22 ial cos /3nx + K sin finx) (5)
1

after m successive integrations gives an expression of the form
m co

fix) = X) c»x" + Z) (o» cos pnx + bn sin pnx). (6)
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Conversely, derivatives up to the order f(m\x) may be obtained from Eq. (6) by term-
wise differentiation. In the expressions for f(x) and any derivative up to (x), any
sine series represents a function having the value zero at x — ±a, thus facilitating
evaluation at these points. In some solutions Eq. (5) is a convenient expression for
f(m}(x). If desired, Eq. (5) can be modified by adding a term c"x combined with
b'n sin (3nx so that the sine series in this equation also represents a function having the
value zero at x = ±a. Then Eq. (6), modified by this additional term, is

m +1 co

f(x) = X cnx" + 2 («» c°s PnX + bn sin /3nx). (6a)
0 1

Equations (6) and (6a) are special cases of Borel's theorem1 which apply to derivatives
of any finite order up to f(m\x).

The preceding methods of derivation, stated in terms of a single variable x, also
apply completely to a three-dimensional member bounded by parallel planes x = ±a
with assigned boundary conditions. In this case f(x) is replaced by fix, y, z) and the
derivatives are written as partial derivatives with respect to x, f(m) (x) becoming dmf/dxm.
Also in Eqs. (la), (2a), (6), (6a), every coefficient an, bn , c„ , c, while independent of x,
is a function of y and z. For example, in Eq. (la), bn is b„(y, z), and c is c(y, z) =
f(a, y, z)/a. Thus f(x, y, z) and each of its ^-derivatives of finite order can be expressed
as the sum of a finite power series and a Fourier series without discontinuity at x = d=«;
the expressions can, therefore, be evaluated definitely at these boundaries.

JE. Borel, Lemons sur les fondions de variables rbelles, Gauthier-Villars, Paris, 1905, p. 68.

A TAPERED LINE TERMINATION AT MICROWAVES*
By GEORGE J. CLEMENS {City College of New York)

1. Introduction. In the field of ultra-high frequency, one method of power trans-
mission is by means of concentric metallic conductors called a co-axial transmission
line. The maximum amount of power can be delivered over these lines if the impedance
of the load is equal to the characteristic impedance1 of the line. In addition, in various
measurements at ultra-high frequency it is essential to have a matched termination
over a broad band of frequencies. This problem was approached experimentally and
led to the tapered line termination as shown in Fig. 1.

To the left of x = 0, the co-axial line has an inner metallic conductor of radius a. From
x = 0 to x = L, the inner conductor is a glass tube coated with a thin metallic film of
resistive material.2 To the left of x = 0, the outer conductor has a radius b and from
x = 0 to x = L, the outer conductor has a linear taper down to a radius c. Also at
x = L, the inner and outer conductors are short circuited.

*Received Dec. 2, 1948. The results and general method of this paper conform to a section of the
author's doctoral thesis, the research for which was carried on under the direction of Dr. Ernst Weber at
the Polytechnic Institute of Brooklyn.

'J. C. Slater, Microwave transmission, McGraw Hill, 1942, pp. 71-74.
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