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-NOTES-
ON THE CONVERGENCE OF MATRIX,ITERATION PROCESSES*

By ROBERT PLUNKETT {The Rice Institute)

A recent paper [l]f has presented a formal proof of an iteration method for the
solution of non-homogeneous (Fredholm) integral equations which is directly applicable
to non-homogeneous matrix equations. Various special cases of this method have been
used for matrix equations (cf. [2], [3]) but no general statement has yet appeared. The
proof in the case of matrices is much simpler and the conditions for convergence are
less stringent than in the case of integral equations.

The equation under consideration is

u = M0 + Qu , (1)

where u is an unknown column vector of n elements, u0 is a known column vector and
Q is a square matrix of n2 elements. The formal solution is obviously

u = (/ — Q)_1w0 , (la)

but the reciprocal matrix is not always easily determined if n is very large. Associated
with Eq. (1) is the homogeneous equation

\rur = Qur , (2)

in which Xr are the latent roots and u, , the corresponding latent vectors.
The usual iteration method is to let

vh = u0 + Qvh-1 (3)

where v0 = u + w is the first approximation to the answer and vh is the hih iterated
approximation. For rapid convergence, an attempt is made to make w as small as
possible. Then

«i = w0 + Qv0 = u + Qw,
(3a)

V h = U + QhW-

For a matrix Q with n distinct, non-repeated roots, Eq. (3a) is easily expanded into
a simpler form. When all the roots are distinct, all the latent vectors are linearly inde-
pendent, and w may be expressed uniquely as a linear combination of them:

n

W = X) ArUr ,
r = 1

where Ar are scalars, and it is obvious that
TO

Q"w = , (3b)
r = 1

which must converge to zero for all | Xr | <1.

*Received Feb. 21, 1949.
jNumbers in brackets refer to the bibliography at the end of this paper.
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If the roots are not all distinct, let us assume that there is one Xs which is repeated s
times, and that | I\, — Q | is q times degenerate, i.e., that there are q linearly inde-
pendent vectors associated with this root. If q = s, the equation may be treated as in
Eq. (3b). If q s, the confluent" form of Sylvester's Theorem is applicable and states
(cf. [4]) that

P(Q) = E r(x.), (3c)
the summation to be taken over all distinct values of Xs , where P(Q) is any polynomial
in Q and

r(x.) = P(xs)2,_1(xs) + P"'(X^-2(X|) + • • • + p(s >

-ciy Wx)/_ \ = \g
Now Pco(Xs) is the t'th derivative of P with respect to X at Xs , F(\) is the adjoint of
(IX — Q), and

A.(X) = (X - Xs+i) (X - Xs+2) • • • (X - Xn),

i.e., the products of the differences involving all the roots except the s repeated roots
under consideration, but including the repeated values of all other repeated roots. Letting

P(Q) =Qh = Z
then

T„(X») = XX-i(X.) + Z,_2(XS) + • • • + Kh ~ 1} ^ S+1 Zo(Xs),

Th+1(\.) = \*+1ZUK) + 0l+v1)X"> ZS_2(XS)

, (h + \)h ■ • • (h - a + 3)X*"+2 „ ,
(s — 1)! AoKK),

and for large h it is apparent that

Qh+1w = £ Th+1(\a)w = £ \,Th(\,)w,

since the matrices Z do not depend on h. The validity of this last expression is increased
for multiple degeneracy of (/Xs — Q); if the degeneracy is q, and all of its de-
rivatives up to the (q — 2)th are zero, which means that

Z,(X.) =0 (i<q - 2)

or that the last q — 1 terms in T(\,') vanish. This is to be expected, since for degeneracy
s, Eq. (3b) holds exactly. Then for large h, Eq. (3a) may be written

Qhw - ~XhrBTw, (3d)

where Br is a matrix involving the Z, (Xg) and is independent of h in the limit, and the
summation its taken over all distinct values of Xr . Thus it may be seen that Eq. (3a)
converges to u for large h in all cases, if all | X, | < 1.



1950] R. PLUNKETT 421

The proposed solution is to let

vh = 6vh-i + (1 - 6)[ua + QyA-,], (4)

where

vx = 9v0 + [m0 + Qf0](l ~ 0)

= u + [el + (1 — 6)Q]w
or

vh = u + [91 + (1 — 6)Q]hw. (4a)

Comparing this with Eq. (3a), it may be seen that the convergence depends on the roots
of [61 + (1 — 0)Q] which are [0 + (1 — 0)Xr]. Thus if all

| 0 + (1 - 0)Xr | < 1, (4b)
Eq. (4a) will converge to u.

There are cases in which it is impossible to find a number 0 which will satisfy Eq.
(4b) for all Xr, without manipulating the Eqs. (1) so as to change Q and thus the roots.
For example, if there are two of the roots which are real, such that 0 < Xp < 1 < Xa,
then for , 6 < 1 and for Xa , 0 > 1 which is impossible. But if all \r are real and less
than 1, where X„ is the largest negative root, (| X„ | — 1)/(| X„ | + 1) < 9 < 1. Similarly,
for all Xr real and greater than 1,1 < 0 < (X„ + 1)/(X„ — 1), where X„ is the largest
positive root. While the exact value of 0 within the limits is not important, it may be
seen that all values of | 0 + (1 — 6)\r \ should be as small as possible for best con-
vergence. For example, in one actual case [2] there was one root of —2, two near —1
and several negative and very small, 6 was taken to be 1/2, the largest value of
| 9 + (1 — 0)Xr | was about 1/2 and five iterations reduced the error to (1/2)5 or about
3%.

If all the Xr are real, positive and less than one, this method is not necessary for con-
vergence, but hastens it if any X, are close to one.

Equation (4) is equivalent to a Toeplitz summation on the vectors vh as specified
by Eq. (3), with the summation matrix (cf. [5])

au = {*}(1 - 0)w0'-, j < i,

= 0, j > i.
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