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ON THE AXIALLY SYMMETRIC FLOW AROUND A
NEW FAMILY OF HALF-BODIES*

BY

A. VAN TUYL
Naval Ordnance Laboratory, Silver Springs, Md.

1. Introduction and discussion. A recent paper by A. Weinstein [1] f includes a dis-
cussion of the flow of a perfect incompressible fluid corresponding to a uniform disc-
source at right angles to a uniform parallel flow from infinity. There is a stream surface
in the form of a half-body under certain conditions whose shape depends on a single
parameter. As the radius of the disc goes to zero, with both the total source strength
and the velocity at infinity held constant, the half-body continually decreases in blunt-
ness until the form of the well-known Blasius-Fuhrmann half-body (cf. [1], for example)
is reached. When the radius increases under the same conditions, an upper value is
reached at which the nose coincides with the disc.

The object of the present paper is to make a combined numerical and analytical
study of these half-bodies, and some features of the corresponding velocity distributions.
A set of graphs is obtained by means of which the nose of any given profile can be
plotted; representative profiles are shown. Curves are also given which show the position
and the magnitude of the maximum velocity on the surface as functions of the half-
body. It follows from Bernoulli's theorem that the pressure is least at the point of
maximum velocity, hence the danger of cavitation is greatest there in an actual flow.
All calculations are made using expressions for the stream function and velocity compo-
nents in terms of elliptic integrals.

The total source strength will be denoted by m, the radius of the disc by b, and the
velocity at infinity by U. Cylindrical coordinates x, p will be used with x measured in
the direction of the parallel flow and with the center of the disc at x = 0, p = 0. Then
as given in [1], the stream function for the total flow is

1 fO, x < 0
$ = i Up2 =F 2mpb-1 / e~ixUJ1(pt)J1{bt)r1 dt + ] (1.1)

0 {-2m, x>0

where Ji(z) is the Bessel function of the first kind of order one. The additive constant
is chosen so that the stream function vanishes on the line p = 0, x < 0. It is shown in
[1] that b < (2m/U)1/2 is the necessary and sufficient condition for \p — 0 to be the
equation of a half-body. The 5-independent quantity (2m/C/)1/2 is the intercept of the
profile on the p-axis, and will be denoted by p0 . The half-body is asymptotic to the
cylinder p = 21/2p0 .

The components of velocity in the x- and p-directions, respectively, are

<'-2>

*Received March 29, 1949.
tNumbers in brackets refer to the references at the end of the paper.
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Concerning the stream function for the uniform disc-source, some errors have oc-
curred in the literature. The stream function was given incorrectly by Beltrami [2],
who apparently overlooked the many-valued character of the stream function for the
ring and integrated a branch which is continuous across the interior of the ring. This
error was reproduced by Webster [3, p. 367]; Lamb [4, p. 239] has given it incompletely,
but correctly as far as it is given. The flow corresponding to a ring of sources has been
investigated by several others. However, it seems that the fundamental fact that the
corresponding stream function is many-valued has not been mentioned except in [1].

We now make the substitution bt = s, and introduce the notation

\p* = m~V, X = b_1po > £ = b^x, t) = 6_1p, u* = U~\, v* = U^v. (1.3)

For (1.1) and (1.2), respectively, we obtain

r | 0, J<0
r = ^2 =F 2„ e-](uJ1(vs)J1(s)s-1 ds + ^ (1.4)

[-2, | > 0

. x2 dt* * 
U 2t7 3ij ' V 2r; 3£ ^ ^

From (1.4) and (1.5), it follows that
< 0

u* = 1 =F X2 / e-|{,Vo(r7s)Ji(s) ds, ] (1.6)
> 0

v* — X2 f e-'£"j1(vs)j1(s) ds. (1.7)
Jo

Given X, the equation of the profile ^ = 0 in the £j7-plane is

r fO, ( < 0
\-2 = ±2t7_1 e~n,'J1(rjs)J1(s)s~1 ds 4- \ = T& ,). (1.8)

U*?""2, f > 0
We introduce also

w„* = 1 + (X2T)"V - 1), v$ = (X27TV, wo* = (uf + vf)Y2 (1.9)
By 1.8, w* at a point (f, rj) is the velocity magnitude along the profile which passes
through it.

It is possible to express (1.6), (1.7), and (1.8) in terms of elliptic integrals, and this
is done here. It was noted by Weber [5] that integrals of the form of (1.8) can be evalu-
ated in terms of elliptic integrals, although the reduction was not carried out. Both
complete and incomplete elliptic integrals of the first and second kinds are present in
(1.6) and (1.8), while the evaluation of (1.7) involves only complete elliptic integrals.
As carried out here, (1.7) and (1.8) are evaluated separately, and (1.6) is expressed
as a linear combination of (1.7) and (1.8) and a third integral which can be evaluated
in terms of complete elliptic integrals. We thus arrive at expressions for (1.6) and (1.7)
of the form aji + b,E + cT + d and aJK + b2E, where K and E are the complete
elliptic integrals of the first and second kinds, and the coefficients are simple algebraic
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functions of £ and 77. It turns out that (1.8) is most simply expressed in terms of K and
(K — E)/k2 = D, where k is the modulus, and (1.6) and (1.7) in terms of K and
(2D — K)/k2 = C. Both C and D are tabulated in Jahnke and Emde, [6]. The tables
of K and E are the most accurate, however, and are used here throughout.

In the first part of the computations, T(£, 77) is calculated as a function of £ for several
fixed values of 77, and the results are plotted. Then making the substitution £T1/2 = x,

1/2 _ a seconj set; 0f graphs is made from the first showing T as a function of x
for several fixed values of p between 0 and 21/2. It is evident that the profiles T(x, p) =
constant all have the p-intercept unity, and are asymptotic to p = 21/2. In addition,
(dT/dx)„ has been found as a function of p at T = 0, for 0 < p < 21/2, and at T = 1,
x — 0, where 0 < p < 1. The first is a simple algebraic expression, the second involves
elliptic integrals. Figure 1 shows T as a function of x for several values of p, while Fig. 2
gives some of the profiles T = constant.

To investigate the position of maximum velocity along the profile, the function
2?(£, rj) = 2~1u*(dw*2/d£)T has been obtained in terms of elliptic integrals. It is ex-
pressed in the form au$2 + bu*v* + cv*2, where the coefficients are linear combinations
of complete elliptic integrals and T(£, 77). Evidently, the curve /i(£, 77) = 0 intersects
a profile T — constant at the point of maximum velocity. To find points of i2(£, rf) — 0,
u* and v* have first been calculated as functions of £ for the same values of 77 taken
before; then the zero of /?(£, -q) has been found for each 77. The curve begins at £ = 0,
77 = 1 and crosses the axis at some 77 > 1. This value of 77 has been found numerically.
From the graphs of T(£, 77) and the transformation x = £2Tl/2, the value of x at which
maximum velocity occurs, denoted by xm , is found as a function of T. It is found that
xm(T) is positive for 0 < T < 0.819, and negative for 0.819 < T < 1. At T = 0, which
defines the Blasius-Fuhrmann half-body, xm(T) is equal to 6~1/2. Further details are
that dxm/dT = — (13/48)61/2 at T = 0, and dxJdT = +0 at T = 1 — 0. When meas-
ured from the nose instead of from the cross section of radius unity, xm seems to be
always decreasing. The plot of xm as a function of T is shown in Fig. 3. The portion of
the curve between T = 0.819 and T = 1 is below the axis, but too close to be distin-
guished from it.

• Finally, w*max is plotted as a function of T in Fig. 4. It becomes infinite at T = 1
and is equal to 2/31/2 at T — 0.*

2. Evaluation of T(£, 77). Setting /t = 0, v = 1 in Watson [7, p. 389, formula (1)],
we obtain

f dt = 7J(27t£2)-1 [ F(l, 3/2; 2; —p2£~2) sin2 <p d<p, .(2.1)
J 0 «^0

where F(a,b; c; z) is the hypergeometric function, and p2 = 1 + t?2 — 2t? cos <p. We have

p(1 o /n. n. n y* 1'3 • • • (271 1) n_jF(l,3/2,2,z) — 2L-2.4...(2b) * >

= 2zx [(1 - zyU2 - 1].
(2.2)

*The author is indebted to Miss C. Brudno and Miss G. Fulton for the drawings and numerical
calculations.
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Thus,

[ e-t'JMJMr1 dt = n [' . S2m2 y ^ 
J0 V Jo 1 + v — 2V COS

_ f sin2 ip dup 
t Jo (1 M~ y2 2r; cos <p)(^2 i Tj2 — 2?j cos v)1/2

We find that

J (1 + 7j2 — 2r/ cos ^>) 1 sin2 <p dtp = , y > 1,

(2.3)

(2.4)
x
2'

We substitute cos <p = 2t2 — 1 into the second integral on the right and set 4r)[£2 +
+ l)2]"1 = k\ 477(1 + rf)~2 = I2. Clearly k2 < I2 < 1. Then for all v > 0,

f (1 -f- rj2 — 2rj cos (p) *(£2 -f- 1 -f- r\2 — 277 cos <p) 1/2 sin2 <p d<p
Jo

= 8(1 + i?r2K2 + (1 + v)TU2\_i~2 fo t\ 1 - «T}/2( 1 - k2t2ru2 dt (2.5)

- (r2 - 1) Jf1 <2(i - zY)-1(i - <ti/2(i - k2t2y1/2 dt].

Finally, to reduce the integrals on the right to standard elliptic integrals, we substitute
t = sn («,&). We have*

f <2(1 - «2r1/2( 1 - k2t2)~1/2 dt = fK sn2 (w,/b) du = (K - E)/k2, (2.6)
Jo Jo

where K and E are the complete elliptic integrals of the first and second kinds, re-
spectively. Similarly,

[1 f( 1 - l2t2y\ 1 - <2rI/2(l - k2fy1/2 dt = [K (1 - 12 sn2 uy1 sn2 u du. (2.7)
Jo Jo

With sn (5, k) — l/k,

fK /- i2 2 \-i 2 -i „! „ „ t  x fK k2 sn 8 cn 5 dn 8 sn2 u du/ (1 — I sn u) sn u du = (k sn 5 cn 5 dn 5) /  t _ , 2—rr—2 • (2.8)t/0 «/0 1 #c sn 0 sn w

The integral on the right of (2.8) is II (K, 8), the complete elliptic integral of the
third kind with parameter 8, having as its path of integration the segment of the real
axis from 0 to K. We note that II(if, 5) is doubly periodic in 8 with the periods 2K
and 2K'i. By [8, p. 523] we have

n(if, 8) = niri + KZ(8, k), (2.9)

*AU formulas concerning elliptic functions and elliptic integrals used here are given in Whittaker
and Watson [8, Ch. XXII],
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where Z(8, k) is the Jacobi Zeta function, and n is an integer which depends on the
determination of 8.

We now make the substitution 8 = K + iM, and use the addition theorem, obtaining
Jacobi's imaginary transformation

m 8 - frwJ " "l/h• (2-10)
where k'2 = 1 — k2. Since k < k/l < 1, it follows that If is a quantity between —K'
and K', plus multiples of 2K'. Noting that TL(K, 8) and Z(8, k) both tend to zero as

0.8

0.4

-0.8 -0.4 0 X 0.4 0.8 1.2

Fig. 1.

M tends to zero, we find that n = 0 for — K' < M < K'. We see that II (K, 8) has
discontinuities at M = (2m + 1 )K', and that ll(K, 8) = 0 at M = (2m + 1 )K'. The
discontinuous behavior of II(K, 5) can also be seen from (2.8), since the left side be-
comes infinite at both M = K' — 0 and M = K' + 0, while cn 8 changes sign at M = K'.

All values of M differing by multiples of 2K' are given by

M = (1 - k'2 sin2 <pYU2 d<p (2.11)
^0

when <f = arc sin sn (M, k') = arc tan [f(»/ — l)-1] runs through all values differing
by multiples of ir. Choosing <p so that <p = 0 for ^ = 0, t] > 1, we see that —K'<M<
K' when -q > 1. As a function of <p, M is Legendre's incomplete elliptic integral of the
first kind with modulus k'. In the notation of Legendre for incomplete elliptic integrals,
used in Jahnke and Emde,

M = F{k', <p). (2.12)
By [8, p. 518],

Z{8, k) = E(8, k) - (E/K)8, (2.13)
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where E(S, k) is the incomplete elliptic integral of the second kind with argument 5.
Using the addition theorem and Jacobi's imaginary transformation for £7(5, k), we
obtain, for —K' < M < K',

Il(k, 8) = i[k2 Sn (Mdn k'] + {K~ E)M ~ KE(M' fc°] • (2'14)

The notation is that of Whittaker and Watson, who write

E(M, k') = / dn2 (u, k') du.
Jo

VT

1.2

Q.0.8

0.4

-0.8

In the notation of Legendre,

E{M, k') = E(k', v>), (2.15)

where M and <p are connected by (2.11).
Using the addition theorem in each case, we see that cn 5 is negative imaginary,

while dn S is positive. Thus,

sn 5 = l/k, cn 5 = -ik~\l2 - k2)1/2, dn 5 = (1 - l2)1/2 (2.16)

and

k2 sn 8 cn 5 dn 5 = -*7(1 - I2)1'2{I2 - k2)1'2. (2.17)
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It follows from (2.3) that

— =b f e 1 dt -\-
o, f < 0

f > 0
l7?

is continuous at £ = 0, t] > 1 having the value (2??) \ Then for rj > 1, substituting back
into (2.5) and (2.3) and replacing K — E wherever it occurs by k2D, we obtain

1 - h+^ [fl + K] + [k'DF{k'•*•> ~KE(k'• "'!• (2-18)

Since both sides vary continuously through 17 = 1, (2.18) must hold also for 57 < 1,
£ 5^ 0. Finally, substituting into (1.8),

nf, i?) = A + 1"® +(v 71)2 ̂ 1 + *») - w,«»)], (2.i9)
17 Xi; L '4'? J Tl?

where = arc tan [£(57 — l)-1], with <p = 0 at £ = 0, 17 > 1. In the region outside the
disc, tp runs from — ir to r. For purposes of calculation, we have the following less
compact form of T(£, rj):

V > 1,

m, v) = \ \d +(v 1)2 X1J 7T)| L 477

=F 2—A [k2DF(k', ft - KE{k', £)] <{
TT7J

J? < 0
U > 0

V < 1>
(2.20)

=F   2^ [k2DF(k', £) - K£(/b', £)] +
""1 I o -2

0, £ < 0

2^2, £ > 0

where <p = arc tan | £(77 — 1)_1 |, 0 < < ir/2. We obtain (2.20) from (2.19) using the
relations F(k', 2x + <p) = 2K' + F(k', <p), E(k', 2x + <p) = 2/?' + £7(/b', #>), and the
Legendre relation KE' + EK' — KK' = v/2.

At T = 0, 0 < p < 21/2,

(f), = (2.21)
This result is most easily obtained by going back to (1.8) and (1.12) and making the
substitution £ = xT~l/2, rj = pT~1/2.
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0.4

Fig. 3.

Fig. 4.
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As seen in Fig. 1, the point T = 1, x = 0 is the intersection of all curves p = constant
for 0 < p < 1. At this point,

= 16^(7(1 + p)-3, (2.22)

where fc2 = 4p(l + p)~2.
3. Calculation of the velocity components. By partial integration, noting that

dJi(Z)/dz = J0{z) — Ji(z)2_1, we have

r, J - JiMivty1] dt = J" e't'JM | Mvt) dt

= - f e't'MvtX-tMt) + j0(t) - JiCOr1] dt, £ > o.
Jo

Further,

ri [ e~i'J0{t)J1(r)t)dt= — [ e~1' J0(t) ^ J0(i?<)
Jo Jo ^

= 1 + [ e-('Jo(vt)[-ZMt) - JM dt.
Jo

Thus, we establish the identity

(1 - tj2) [ e~('J0(vt)Ji(t) dt = 1 - 2r, [ e-('J1(vt)J1(t)t~1 dt
Jo Jo

(3.1)
— [ e~i'J1(r)t)J1(t)dt — £ [ e~1' Ja{r)t)J0{() dt.

Jo Jo

By Watson [7, p. 389],

jf e-£lJMt)J«{t) dt = T-^-v^n_i/2(l+^W))

where Q,(z) is the Legendre function of the second kind of order v. For v + 1 > 0, we
have the integral representation (cf. [8, p. 317])

QXz) = 2—1 f (1 - t2)\z - t)—1 dt;

substituting t = 2u2 — 1, with 2(1 + z)'1 = k2, into this,

Q-U2(z) = k [ (1 - u2)~1/2(l - k2u2yu2 du = kK, (3.2)
Jo

Qi/z(z) = k3 f1 u\ 1 - w2)1/2(l - k2u2y3/2 du. (3.3)
Jo

When z = (1 + £2 + rji)(2r{)~1, we have 2(1 + z)-1 = 4t7[£2 + (1 + v)2]1, the quantity
already defined as k2. Substituting u = sn (w, A:) into (3.3), we find that

*K 2 2^ / \ j3 I sn iicn d , ,
Qi/2(z) - Jo dn2 v dv. (3.4)
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We may easily verify the relation

k2 f sn u en u , . sn u cn u . n f 2 ,/ —j-2—■— du = —u H r   t 2 sn u du,J dn u dn u J

from which it follows that

Q1/2(z) = k3C. (3.5)

By (1.8),

[0, £<0
2rt I e [£UJi(r]t)Ji(t)t 1 dt — rj) +

Jo 12, i > 0.
Substituting the preceding results into (3.1), with £ > 0 replaced by | £ |, we get

< 0,
(1 - v2) f e-^'MvQUt) dt = ±1 =F v2T& v)±~%(K + k\0

J o tti If > 0.
Finally, substituting (3.6) and (3.5) into (1.6) and (1.7), we obtain the following ex-
pressions for the velocity components:

X~V - 1) = (1 - vYWfa v) - kZ(W/2)-\K + k\C) - 1], (3.7)

\~2v* = &3(irij1/2)_1C. (3.8)

4. The velocity maximum. For the function ri) = 2~1w*(dw* 2/d£)r , we find

R(£> v) = aw*2 + butvt + cv*2, (4.1)

where

a = (2*W/2)-\v2 - 1)_1{[4i? + (2 - 2V + ?)k2]K
(4.2)

- (2„fc'TW + 2(fv - W)k2 + f(l - „)fc4].E},

b = 2V(1 - v2T2im, v) — 1 — |(2irfci75/2)_1 {[4tj3 - (1 - 4i;2 + 2„3 + „4)fc2]K
(4.3)

- (2fc'VW - 2(1 - 2t72 + 4rj3 + J)k2 + (1 - OT)!,

c = -(2Tfc1,3/2)-1{[4 - (2 + 7j)k2]K - (2A:'2)-1[8 - (8 + 2v)k2 + (1 + v)k*}E}. (4.4)

Near T = 0, the equation of the profile T = constant is

x = (p2 — 1)(2 - P2)-1/2 - (3/8)(p2 - 1)(2 - p2)1/2T + 0{T2). (4.5)

The coefficient of T is the reciprocal of (2.21), and x = (p2 — 1)(2 — p2)_1/2 is the equa-
tion of the Blasius-Fuhrmann half-body.

Expressing \f/* in a similar form for T = X-2 near zero and computing the velocity
components, we obtain

w? = (p/2)(8 - 3p2)1/2 + (3/8)(2 - p2)3(3p2 - 2)(8 - 3P2ylT + 0(T2). (4.6)
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From (4.5) and (4.6),
Xm = 6~1/2 - (13/48)61/2r + 0(T2), (4.7)

= 2/3I/2 + 0(T2). (4.8)

The x-intercept x0(T) of the profile is given by

Xo(T) = (T - 1)(2 — T2y1/2. (4.9)

Combining (50) with Fig. 3, we can plot xm measured from the nose of the half-body as
a function of T.
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