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In terms of 7 then the first approximation to the temperature distribution in this ex-
ample has the form
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THE THICKNESS OF A SHOCK WAVE IN AIR*
By A. E. PUCKETT anp H. J. STEWART (California Institute of Technology)

1. If the viscosity and heat conductivity of a gas are neglected, it is easy to show
that a one-dimensional supersonic flow of this gas may be interrupted by a discontinuity,
or shock wave, across which the velocity jumps to a subsonic value (see [1] and [2]1).
In a real gas, viscosity and heat conduction may be negligible through a large part
of a supersonic flow field but clearly must become important in the neighborhood of
the large velocity gradients associated with a shock wave. If these effects are considered
in the equations of motion, it is seen that the deceleration corresponding to the velocity
jump through a shock wave must actually occur in a finite, although short, distance.

The first theory of the thickness of a shock wave was given by Rayleigh [3] who
assumed that the fluid was a thermally and calorically perfect gas, that the viscosity
coefficient u was constant and that the heat transfer coefficient A was zero. Taylor [1]
considered the effect of a constant, non-zero value of A by assuming that the velocity
jump across the shock wave was small compared with the local speed of sound. Becker
[4] noticed that a solution could be obtained without linearization in the special case that
the Prandtl number ¢ = Cpu/N = 0.75, where Cp is the specific heat at constant pressure.
In all of these investigations the physical constants, Cpr , p and A, were considered to
be constant, and the linear (Navier-Stokes) theories of the viscous stress tensor and the
heat flux vector were used. All of these investigations showed the width of a shock wave
in air at normal conditions to be extremely small; for strong shock waves the width
was computed to be less than the molecular mean free path. In view of these results,
several writers (see [5] and [6]) have discussed the influence of deviations from thermo-
dynamic equilibrium and of the higher order, non-linear (Burnett) terms in the viscous
stress tensor and heat flux vector.

In the present note the problem of the width of a shock wave in air is re-examined
using a thermally perfect gas and the linear (Navier-Stokes) theories of the viscous
stress tensor and the heat flux vector. It is found that the solution can be carried
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through with the physical parameters, Cr , u and A, given as functions of the absolute
temperature T, provided ¢ = 0.75. Since the experimental determination of the value
of A for air at high temperatures is very difficult, accurate data on the variation of &
do not exist; however the available data show that o is nearly constant and varies from
about 0.77 at 0° C to0 0.72 at 300° C. The special solution considered here is thus a reason-
able approximation. If the variation of the physical parameters is taken into account,
the shock wave width, even for the limiting case of an infinitely strong shock wave, is
found to be several molecular mean free paths; consequently the importance of the
Burnett stresses and of the deviations from thermodynamic equilibrium is greatly
reduced, although not eliminated.

2. It is assumed that the gas obeys the perfect gas law, P = pRT, where P and p
are the pressure and density, respectively, and R is the gas constant. This implies that
the enthalpy h is a function of the temperature only and that Cp, = dh/dT. The con-
tinuity equation is

%% , 9 -
+ axi (p’u,) - 07 (1)
where u; is the velocity vector. The equations of motion are
du; _ _1oP 1 9
+ Uj 6.76, = p 0:6, + p Ox; (Tn)} (2)

where the stress tensor 7,; is given by the linear theory as
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The corresponding equation for the conservation of energy is most easily derived (see
[7] or [8]) in the form

oT l¢] D P . uwu; K2
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A simpler form may be obtained by using the continuity equation to transform the
last term of Eq. (4). It is thus seen that

oT ad D UU; QE
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If these general equations are applied to a plane shock wave, the motion is reduced
to a steady state motion in a coordinate system stationary with respect to the wave.
The only velocity component, u, is normal to the wave front; so the flow is one-dimen-
sional in z, the distance normal to the shock wave front. Under these conditions the
continuity equation can be integrated to

puU = m, . (6)

where m is the mass flow constant. The only non-vanishing stress component is 7., =
(4n/3) (du/dzx). Consequently, the equation of motion is

d 4 du) _
da;(m + P — 3 d—x>—-—0. (7)
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This can be integrated to

Su— o+ P — mB. @®)
Since the velocity gradient must vanish asymptotically far ahead of the shock wave
(section 1) and far behind the wave (section 2),

mB=P1u3+P1=P2u§+P2~ 9
The energy equation (5) becomes
L(htde) o LI 48, )
™ dx h+2u T dx de+3“udx' (10)

Since h = h(T) and Cp = dh/dT,

L i o e (11)

If the Prandtl number is constant, Eq. (10) can thus be written

ma (i) = [ (3] 2

This can be integrated at once to
1
h+§u A+*%d—(h+— ) (13)

Since the gradients must vanish at sections 1 and 2,
A=h+1/2ul =h + 1/2u;. (14)
Furthermore, if ¢ = 0.75, Eq. (14) shows that the appropriate integral of Eq. (13) is
h+1/24 = A ' (15)

The simple shock theory is obtained by solving Eqgs. (9) and (14) together with
the equation of state in the form pu = mRT and the enthalpy relation h = A(T).

The theory of the shock wave thickness is obtained by solving Egs. (8) and (15),
together with pu = mRT and h = h(T). An interesting feature of this solution is ob-
tained by considering the point at which the viscous stress [Eq. (8)] is a maximum. At

this point
d RT
0= md—x<u+7> (16)
By Eq. (15) the condition of Eq. (16) becomes (since Cp = Cy + R)
ut = g” RT, 17)

i.e., the maximum viscous stress occurs at the point where the speed is equal to the
local isentropic speed of sound. The fluid properties at this condition will be denoted
by u, , T, , ete.
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The solution of the velocity distribution through the shock wave can be written
formally, after substituting pu = mRT in Eq. (8), as

3 _ pudu
gmo= f T RT — Bw (18)

where the enthalpy, and thus T and g, is known as a function of v by Eq. (15). In
general, numerical procedures must be used to integrate Eq. (18). It is of interest to
note that a solution could also be obtained for any value of ¢; the coordinate x could
easily be eliminated between Eqs. (8) and (10), leaving a first order, first degree differ-
ential equation for T'(u) which could then be integrated numerically as the replacement
for Eq. (15).

3. As an example of this theory, consider the case in which the gas is calorically
perfect, so that Cp is constant, and in which u is also constant (Becker’s problem).
For this case Eq. (15) is

CoT 4+ 1/24* = A, (19)
and Eq. (8) can be written
4p  du 2<'y + 1) _ <'y - 1)
3m%ar — Y\ oy Bu+ A ) (20)

where v = Cp/Cy . By the relations of the corresponding simple shock wave theory,
Wy = Uy, B = (w; + w)(y + 1)/2and 4 = wu,(y + 1)/2(y — 1). Thus

8yu d_u _ _
3+ Dmtde - @ T W —w). (21)
The integral of Eq. (21) is
8y Uz [ul — U U — U :|
TT8 + Dm e — w) lo g - log Us — Uz )’ (22)

where z, = 0. Let u = u/u, so %%, = 1; then
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where R, is a sort of a shock wave Reynolds number. Since the dimensionless approach
velocity 4, is a function of the approach Mach number, this expression defines the curves
of R. versus u for various values of M, . This relation is shown in Fig. 1. It is of interest
to note that this solution for the velocity distribution through a shock wave considering
both heat transfer and viscosity for ¢ = 0.75 is almost identical with the corresponding
solution (see [9], p. 651) with no heat transfer (¢ = ©). For ¢ = « the constant factor
v in the numerator of Eq. (23) is deleted; thus, the effect of heat transfer increases the
shock wave thickness by the ratio y : 1.

The shock wave thickness resulting from this computation is, of course, indefinite
in the sense that % approaches %, and %, asymptotically on the two sides of the shock
wave. However an arbitrary measure of the thickness of the region within which the
viscosity effects are important may be defined as

Uy — Uz
b= ¥ Cdudn)y @
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For the case that u is constant, (du/dz), is the greatest negative velocity gradient; if
u is not constant, it is the velocity gradient at the point of maximum axial viscous
stress. Even in this latter case Eq. (24) is still a reasonable index of shock wave thickness.
By Eq. (21) the above equation becomes

p*u*6 - 8‘Y <u1 + U*>
e 30 1) \uy — g/’

As an example, consider a weak shock wave in air at normal atmospheric conditions
with w, = 1.05 u, , u,/p, = 1/7 cm®/sec., v = 1.400 and u, = 30,000 cm/sec. Then

(25)
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8 = 3.0 X 107* cm. This value is very close to Taylor’s estimate [1]. It is also known
from the simple shock wave theory that %, can never exceed the value for M, = o,
Tmex = (v + 1)(v — 1)]'? = 2.45, approximately. In this case

pxtixd _ 3 70 (26)

Fex
This result can easily be interpreted in terms of the kinetic theory of gases. In the
simple kinetic theory, u = (1/2)pcl, where ¢ is the average molecular velocity and [ is

the mean free path. For a Maxwellian velocity distribution, ¢ = 0.921 (3RT)"*; so
for y = 1.40,

%:6 = 1.48 % 27)

The shock wave thickness for %; = 1.05 (M, = 1.05) is thus 43 mean free paths, for
%, = 1.96 (M, = 3) it is 3.2 mean free paths, and even for %, = 2.45 (M, = «) the thick-
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ness is 2.5 mean free paths. A more satisfactory measure of the usefulness of this con-
tinuum theory is the number of molecular collisions during the time of transit through
the shock wave. Since the mean molecular speed is approximately equal to the speed
of sound, the number of collisions is approximately equal to the width, in mean free
paths, divided by the Mach number. Since M = 1 at u = u,, the shock wave thickness
as computed above may also be interpreted, roughly, as the number of collisions. The
interpretation given here differs from those given previously in that conditions within
the shock wave are used to estimate the mean free path. '

The problem of rate of approach to thermodynamic equilibrium in a shock wave
has been discussed by Bethe and Teller [6]. They conclude that equilibrium for the
translational and rotational degrees of freedom is attained very rapidly; probably in
one or a very few molecular collisions. On the other hand, equilibrium with respect to
vibrational modes and dissociation may require from 20 to many thousand collisions.
For air, with low stagnation temperatures, such as would exist in a supersonic wind
tunnel, the energy content of the vibrational degrees of freedom is almost negligible.
Consequently it appears that the continuum theory for the thermodynamic changes
in a shock wave should be a good approximation, since it may be in error by at most a
few mean free paths, or at most a factor of 2 in the estimated thickness of a shock wave
at high Mach numbers. If the stagnation temperature is high, much larger errors may
be expected, since the energy associated with molecular vibration and dissociation may
be important.

If the effect of variations in the physical parameters is considered, there are two
cases which are important. The first is the case in which the variation of Cp is neglected
but the variation of u is considered. This case applies in supersonic wind tunnels since
the stagnation temperatures are relatively low, being only a small amount above normal
atmospheric temperatures in most cases. For this case Eqgs. (19) and (21) still apply.
The integrated form, Eq. (23), is no longer correct since u was considered constant in
the integration; Eq. (25) is still correct, however, provided the value of u at u = u, is
used. This result was implied in the kinetic theory interpretation. It may be noted that,
according to the simple kinetic theory used above, the viscosity coefficient varies as
T*?. The actual variation is somewhat more.

If both x and Cp are variable with temperature then Eqs. (8) and (24) give

Pl O
Mk

U (U — Up)Ux

4
3

In general, the shock wave equations (9) and (14) must be treated numerically in order
to determine u, , u, and T, for given values of u, and T, .
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REMARKS ON THE MOTION OF ANCHOR CHAINS*
By R. GRAN OLSSON (Institute of Technology, Trondheim, Norway)

1. Introduction. The problem of the motion along a smooth, inclined pilane of an
anchor to which the end of a chain is attached (Fig. 1) has been treated in the book of
S. Timoshenko and D. H. Young [1].f The equation of motion is, however, given in

A S Y

X

Fia. 1.

such a form that only a relation between the velocity and the displacement is obtained.
In this paper it will be shown that very simple relations between the time and the
kinematic quantities (displacement, velocity and acceleration) can be stated by intro-
ducing the elliptic functions of K. Weierstrass. Very simple expressions for the kinetic
quantities (momentum, kinetic and potential energy) can also be established. The
motion is assumed to be frictionless, but it is not difficult to take into account a dissipa-
tive force, which is either constant or proportional to the moving mass.

2. Nomenclature. In this paper the same notations as those of Timoshenko and Young
will be used: @ = acceleration of the weight W, [cm sec™®]; B = rectilinear momentum
[g sec]; C = constant of integration; g = acceleration of gravity [cm sec™]; m = mass
of the system in motion [g ecm™ sec’]; P = force [g]; ¢ = weight per unit length of the
chain [g cm™']; @ = loss of energy by percussion [g cm]; ¢ = time [sec]; T = kinetic
energy [g cm]; u = parameter of the elliptic functions; v = velocity [cm sec”']; V =
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