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Engineers, anxious to base their calculations on a rigorous as well as simple theory,
do not hesitate to assume that structural materials are perfectly elastic, that is, that
the deformations experienced under the action of external loads disappear as soon as
these loads are removed. But this assumption is justified only if the stresses remain
everywhere below a certain limit, called the "elastic limit", and if the period over which
the loads are applied is sufficiently short.

In practice, the stresses exceed the elastic limit much more frequently than is gener-
ally supposed, even in the most rigorously and safely calculated structures. The duration
of the stresses, on the other hand, is extremely variable, covering all the range from
impact stresses to stresses which subsist during the entire lifetime of the structure.

Stresses beyond the elastic limit, as well as long sustained stresses, produce non-
elastic strains which do not disappear on removal of the loads which have caused them.
This fact has two important consequences. First, the assumption of a one-to-one corre-
spondence between strains and stresses, which is fundamental in the theory of elasticity,
must be abandoned. Secondly, a state of residual stresses** is established, causing a
distribution of the inner stresses which is completely different from the distribution
furnished by the theory of elasticity.

Obviously, we cannot represent this phenomenon by a mathematical theory without
introducing some hypothesis regarding the nature of the deformation and its relations
to the stresses which produce it. This is what we are proposing to do next, and we will
try to find the physical significance of these hypotheses and point out to what extent
they correspond to the empirical facts.

A solid body is said to be perfectly elastic if there exists in it a one-to-one corre-
spondence between stresses and strains. This is the case for most structural materials,
as long as the stresses are sufficiently small and act for a sufficiently short time. But,
as soon as the stresses become greater, though they may act over a very short period,
the process ceases to be reversible; part of the strain will remain in the structure even
after the loads have been removed. We call these "plastic strains".

Of course, we do not intend to assert that there actually exists, for each material,
a well-determined limit such that the material behaves in a perfectly elastic manner
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as long as the stresses do not exceed this limit. We wish to state only that, for all practical
purposes, we may assign a limit, below which the process can be treated as reversible,
in the sense that the plastic strains are negligible in comparison with the elastic strains.
Beyond this limit, however, the process becomes decidedly irreversible. In general, this
limit is purely conventional. As a matter of fact, the limit, beyond which irreversible
processes are observed, decreases with increasing accuracy of the observations.

However, there are materials, such as iron, mild steel, bronze, etc., for which the
limit between the elastic range (characterized by a nearly complete absence of permanent
deformation) and plastic range (where almost the whole deformation is permanent) is
well-defined. In these materials the permanent strains, though occurring also when
the stresses are very small, are negligible compared with the elastic strains as long as
the stresses do not exceed a certain critical value. As soon as this value is reached, the
laws which govern the process change all of a sudden, and we may say that all further
strains are practically permanent. As a matter of fact, the plastic strains which now
occur, grow so rapidly, even under a constant stress, that the elastic strains which
affected the material up to this moment, become negligible in comparison. This limit,
which is no longer merely conventional but has a well-determined physical meaning, is
called the "yield limit".

We will choose this apparently rather special case as the starting point to derive
a mathematical theory of the elasto-plastic equilibrium, that is of the equilibrium of
bodies in which the elastic limit has been reached and plastic deformations have oc-
curred.

We will make the following assumptions: first, the one-to-one correspondence be-
tween stresses and strains is valid for each element of the body as long as the material
is stressed within its elastic range; secondly, as soon as this limit has been reached,
the element becomes perfectly plastic and the deformation can increase indefinitely
under constant stresses. Moreover, we will assume that the plastic strains are super-
imposed on the elastic strains without changing the characteristics of the latter, partic-
ularly without depriving them of the property of disappearing upon the removal of the
loads which have caused them.

It can be shown that these apparently very restrictive hypotheses adequately cover
a great number of cases. They even explain the cases in which the transition from the
elastic zone to the plastic zone takes place with continuity, that is, when a physically
well-determined elastic limit is absent. From these hypotheses it is also possible to
develop a very elegant interpretation of the so-called "strain-hardening", which is
always connected with plastic deformation.

To this end we will first investigate the nature and the fundamental characteristics
of this phenomenon, referring to a very particular, but simple and experimentally well-
known case: that of a cylindrical or prismatical metallic bar submitted to axial tension.
It is well-known that when the yield limit is reached in such a bar, localized slip occurs
along certain planes, whose angle with the axis of the bar is determined by a relation
between the normal and the shearing components of the stress transmitted across these
planes.

A single, small inhomogeneity in the material is sufficient to start localized slip.
In the zones where slip occurs it has the tendency to cause a reduction of the cross
section together with an increased strength of the material. At first, the favourable
effect of this second factor more than balances the unfavourable consequences of the
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first one. Therefore, slip soon ceases in that section only to appear immediately in some
other section, then in a third one, and so on. This process of propagation may be made
visible by polishing carefully the surface of the test specimen. Slip is then indicated by
the appearance on the polished surface of extremely thin inclined lines, the so-called
slip bands. These bands grow in number, extend, and become interlaced in a kind of
opaque veil which quickly spreads and soon covers the whole surface uniformly.

We are thus led to consider a new condition of the material in which the original
homogeneity, obviously destroyed by localized slip, is finally restored on the whole.
The most remarkable and obvious characteristic of this new condition is a rise of the
elastic limit of the material, that is, an increase of the value of the stresses to which
the test specimen can be submitted without showing plastic strains. It is exactly this
rise of the elastic limit which is called the strain-hardening of the material.

Having reached these conclusions from the experimental standpoint, we are now
going to look at the problem from an exclusively theoretical point of view. We will
assume that the material is perfectly homogeneous and consequently that in the elastic
field the stresses are uniformly distributed throughout the specimen. According to this
hypothesis, the elastic limit will be reached in the same instant in all parts of the body,
and we may conclude that the plastic strains will be uniformly distributed too.

These plastic strains will not give rise to any residual stresses; they will be super-
imposed on the elastic strains, without changing the stress distribution or the value of
the strain energy. This means that the mechanical work necessary to produce these
plastic strains has been completely spent to overcome the inner friction and to produce
heat.

Let us now suppose that the specimen is unloaded. The conclusions reached above
explain the fact that the specimen has a permanent set, in the strictly geometrical
sense of a permanent change of shape and dimensions, but they do not indicate at all
the experimentally established raising of the elastic limit.

However, due consideration must be given to the fact that the assumed structural
homogeneity of the material, as well as the uniform distribution of the plastic strains,
do not really occur. It then becomes clear that, since the plastic strains are no longer
"compatible" as a rule, a state of residual stresses is set up, which will superimpose
itself on the stresses previously established in the elastic range and which will subsist
even after all elastic strains have disappeared. In order that this condition may be
achieved, at least a portion of the mechanical work spent on producing the elastic strains
should not be lost, but transformed into potential energy. This energy mil not be re-
covered as external work when the loads are removed. For this reason we shall call it
"residual energy".

However, the simple fact that this residual energy subsists after the external forces
have ceased acting, is sufficient to let us think that something else beyond shape and
dimension has changed in the body, and that here lies, perhaps, the explanation of the
phenomenon with which we are dealing. We will show that this is possible by means of
a very simple but very significant example, taken from the field of reinforced concrete
design.

Let us consider a reinforced concrete bar submitted to an axial tension. It is well-
known that, as long as the stresses are small and the material behaves everywhere in a
perfectly elastic manner, the stresses must be distributed over the various elements of
each cross section of the bar according to the ratios of their moduli of elasticity, if the
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cross section is to remain plane. But as soon as the elastic limit of concrete is reached,
the material enters the plastic state. Again, if the cross section is to remain plane, the
concrete must undergo, independently from any further increase of the stresses, such
strains as are necessary to let the metallic reinforcement carry any further increase of
the load.

The stress-strain diagram then takes the shape of a broken line, of which the first
section, beginning at the origin, covers the elastic range. The second section covers the
elastic-plastic range. A third section, parallel to the strains axis will then represent the
final phase, when the entire cross section behaves in a plastic manner.

Let us now suppose that the load is removed. The elastic strains will naturally show
a tendency to disappear; this will not be the case for plastic strains. On the contrary,
these will even succeed in preventing a complete disappearance of the elastic strains.
Thus, a state of residual stress will be set up, such that the metallic reinforcement will
be stressed in tension, while the concrete will be under compressive stresses. It follows
from this that the load required in order to let the concrete again reach its elastic limit,
so that further plastic strains occur, must now be greater than the first time.

If we ignore the existence of the residual stresses, we shall naturally speak of a rise
of the tensile elastic limit of the concrete. But this is not correct: it is not the elastic
limit of the concrete which has risen, it is the initial state of stress which is no longer
the same.

This result is not at all restricted to the type of structure we have considered as
an example. To make sure of that, let us go back to the fundamental problem, from
which we started, and study the general case of any structure whatsoever, consisting
of heterogeneous elements having elastic limits varying from a certain minimum to
some maximum. Assuming these elements to be uniformly distributed throughout the
structure, we can see in a very general way that the above-mentioned broken line will
be replaced by a polygonal line and, as a limit, by a curve. In fact, each element stops
contributing to the resistance of the structure as soon as it reaches its own elastic limit,
and thereafter it just conforms plastically to the elastic strains of the surrounding
elements, which have higher elastic limits. These elements must carry any further
increase of the load. In other terms, the stress is shifted from the elements which have
reached their yield limit to the elements which are still stressed elastically. If now the
loads are removed, the plastic strains prevent the structure from returning to the
original unstrained shape and thus give rise to residual stresses. The elements which,
owing to their higher yield limit, have carried the greatest portion of the load, keep
on being subject to stresses of the same type, whereas the elements which have under-
gone plastic strains show a tendency to be subject to stresses of the opposite type.

It follows from this that when the structure is again loaded, the last elements are in
a more favourable condition, because the residual stresses will have to be overcome
before stresses of the type connected with the acting loads may again appear. Thus the
elastic limit shall be reached, even for the weaker elements, when the loads have attained
a higher value than was originally necessary to produce plastic strain. This explains the
apparent rise of the elastic limit of the material.

If, on the other hand, after having produced the strain hardening of a specimen,
by submitting it to the action of a well-determined system of loads, we apply to the same
specimen a system of loads of the opposite direction, the stresses produced by these
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forces will be added to, and not subtracted from, the residual stresses. It will then
appear that the elastic limit has been lowered (Bauschinger effect).

We are thus entitled to consider our interpretation of the phenomenon of strain-
hardening as reasonable. At any rate, it is^certain that the outline of the phenomenon,
which we have suggested as a starting point of a mathematical theory of the elasto-
plastic equilibrium, leads to a very satisfactory interpretation of the experimental
results.

The situation is very different when the stresses, though not being high enough to
cause the elastic limit to be reached in any point of the structure, keep on acting for a
time long enough to result in irreversible effects, that is to give rise to strains which
are not going to disappear immediately when the loads producing them are removed.
This phenomenon has been long known as "time effect" and involves the superposition
on the elastic strains, due to the external forces, of other strains which grow progressively
witR time under the sustained action of those same forces. These strains do not disappear
as soon as the forces cease acting, but they may disappear later on (in any case very
slowly) if the structure remains free to return to its initial unstrained shape.

A mathematical theory of such a phenomenon is not easy to establish, because the
strains at a certain instant depend not only on the loads acting at this instant, but also
on previous loads and on the duration of the period for which they have acted. We
shall consider only a very particular case, which is, however, very important for practical
purposes, namely, the case of very small strains (of the magnitude of the elastic strains)
which we shall assume to increase, at any instant, in proportion with the stress existing
at this instant.

Let us suppose that the structure is homogeneous and that the coefficient of pro-
portionality, which is usually called the "creep coefficient", is the same for the entire
structure. Moreover, let us assume that there is no state of initial stress. The time effect
will then involve strains which, like the elastic strains, satisfy the conditions of com-
patibility. Accordingly, these strains will subsist even when the elastic strains will have
disappeared with the removal of the loads. It is clear, therefore, that the time effect
does not produce any residual stresses, if the structure was free of initial stresses. It
can be shown quite generally that in a homogeneous body the time effect appears geo-
metrically as a proportional increase of the elastic deformation produced by the loads
and statically as a proportional decrease of the residual stresses.

Let us now introduce the hypothesis that the body is not homogeneous, which
proved so useful when we dealt with plastic strains. The situation will then change, and
the theory will explain immediately the observed tendency of the strains, due to time
effect, to vanish slowly once the loads have been removed.

We will assume, therefore, that the body consists of heterogeneous elements affected
by different flow coefficients, uniformly distributed throughout the body. We may
foresee that the elements characterized by higher flow coefficients, following a prolonged
action of the external forces, will undergo greater strains than the elements with lower
values of that coefficient. As a consequence, the last elements, conforming to the first,
will undergo supplementary elastic strains. When the loads are removed, these addi-
tional strains, like every elastic deformation, will tend to vanish, but they will be pre-
vented from vanishing completely by the non-elastic strains of the surrounding elements.
This gives rise to a state of residual stress: the stresses caused by the elements with
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small non-elastic strains will produce in the elements with greater inelastic strains a
new set of strains of opposite type, and these will force the body to move towards the
initial unstrained shape.

From this mass of apparently so different and complicated facts a very interesting
and absolutely general conclusion can be drawn concerning the co-existence, at any
moment and in any state of equilibrium, of elastic strains and non-elastic strains, what-
ever their origin and their physical nature may be. Here is how we can reach this con-
clusion quickly.

We will denote the components of the elastic strain by

ex ) *v > ' ' ' i 1/xy

and those of the plastic strain by
> €y ) ' ? Ifxv •

We will further assume that both strain distributions are continuous, uniform and very
small, so that it is always possible to write the components of the resulting total strain
as follows:

J Gy 1 , , *Yxy "I- xv •

It must be kept in mind that the resulting total strains are compatible, but that
neither one of the two partial strains will be compatible as a rule. Assuming that neither
one of the two partial strains is compatible, let us now try to state analytically that one
of these partial strains is elastic.

This can be achieved in two ways, either considering the deformation as a state of
equilibrium, or taking into account the way it occurs or vanishes.

In the first case we are led to assume that any element of the body is kept in a
strained condition by the stresses which act on it owing to the surrounding elements.
Thus the strains are strictly connected with a system of stresses which we shall define,
as usual, by means of six components of stress, namely:

0"x j &v y ' ' * j Txy •

If, on the other hand, we adopt the second point of view, taking into account the
tendency of the strains to vanish once the loads which caused them have been removed,
we must conclude that there exists an elastic strain energy, produced by the trans-
formation of the mechanical work spent to make the actual strains occur in the body.
This energy may again be recovered as external work, when the strains disappear for
one reason or the other. This strain energy is assumed to be the sum of the elementary
strain energies of all the individual elements of the body. In this way each of these
elementary energies is completely defined when the condition of the element to which
it refers is known. It is not necessary, in order to characterize it, to introduce either the
condition of the other elements or their relative position. This results in the following
expression of the energy of the body:

$ f <pdV,
Jv

where <p is the elastic strain energy referred to the unit of volume. By definition, <p is a
function of the six strain components.

It can then be shown that the elementary elastic strain energy is a positive definite
form of the second order, whose first partial derivatives with respect to the six strain
components equal the corresponding stress components. Thus the assumption from
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which we started amounts to this: the six stress components are linear and homogeneous
functions of the six strain components, and vice versa. It follows from this that the
elementary elastic strain energy may also be regarded as a second-order, positive definite
form of the six stress components. Its first partial derivatives with respect to these new
variables equal the corresponding strain components.

Let us now study the non-elastic strains, that is, the strains which do not vanish
together with the loads. The work spent in order to produce these strains will not be
recovered immediately. To develop a better understanding of this we will study sepa-
rately the element, taken alone, and the body consisting of all elements.

In the first case, the fact that the mechanical work spent to produce the strains
cannot be recovered may be expressed by assuming that this work is lost through ir-
reversible transformations. This prevents the accumulation of any strain energy. The
same idea can equally be expressed by stating that the strains, once they have been
produced, go on existing independently from any external action which may keep the
body in its strained condition. As a consequence, the existence of strains does not imply
the presence of stresses.

But what has been stated for a single element does not apply to the body as a whole.
In it non-elastic strains can occur only in some points, so that they will generally form
a non-compatible system. Along with this system we must then have a series of com-
plementary elastic strains such that the composite strains become compatible. Thus
the non-elastic strain of a given element gives rise to a series of elastic strains and of
stresses in the surrounding elements. We shall call these stresses "residual stresses" to
distinguish them from the stresses which are connected with the loads. These stresses
involve an elastic energy which we shall call "residual energy" to remind us that it is
connected, like the condition to which it refers, with the presence of non-elastic strains
and that it keeps on existing even after the loads which produced it.

The mechanical work required by a non-elastic deformation does then consist of
two parts: one is spent to produce the deformation itself and is lost through irreversible
processes; the other gives rise to the state of residual stress. Neither of these two func-
tions is recovered the moment the loads are removed. But while the first one is definitely
lost, the second will remain available in the body as strain energy. It may even happen
that, joining the strain energy produced in the same body by another system of loads,
this residual energy will become apparent through the reactions of the body. To the
new loads, it may even be transformed again into mechanical work, if there exist in
the body any elements able to be further strained under time effect, or if by proper
treatment, we succeed in freeing it. In any case, this distinction between the two parts
of the work spent on the production of non-elastic strains is of basic importance. It
will always be necessary to take into account separately the part which causes a real
loss of energy, while, in view of global evaluation of the strain energy, the other fraction
will have to be treated as if it were work spent in order to produce new elastic strains.

Let us now consider the body in equilibrium under the action of a given system of
loads and suppose that the stresses undergo a very small variation compatible with
these loads. This means that, while the non-elastic strains remain unaltered, the stress
components shall undergo very small variations

5(tx , 8&y , • • • , 8txv j

which form a system of stresses in equilibrium in the absence of external forces.



360 G. COLONNETTI [Vol. VII, No. 4

We consider the function

"3? + J" (txCx + • • ■) dV,

the first variation of which can be written in the form:

/ [(€x + «x) fox + («» + «») Sa„ + • • • + {yxv + yxt/) 8Txjj\ dV.
Jy

We see at once that this variation yields the work which the system of stresses

8&X J 8(T y , ' ' ' j 8txy

would carry out if the body were to undergo the change of shape characterized by the
following components:

^x I ^x , | €y , " * * J 7x1/ ~~H *Yxy •

Now this system of stresses is, by hypothesis, in equilibrium in the absence of all external
forces. On the other hand, the change of shape is certainly compatible with the possible
constraints of the body, since it is exactly the one which the body had to undergo in
order to pass from the unstrained natural state on to the state of equilibrium which we
are considering. From the principle of virtual works it follows, therefore, that

[ [(ex + «x) Sax + • • •] dV = 0.
jv

Taking into account the fact that the second variation is:

<p(8a-x ■ • •) dVI
and that the integrand is positive definite, we may state the following theorem: For
each system of loads and of non-elastic strains, the inner stresses characterizing the state of
equilibrium are those which minimize the expression

^ + / {tx^x + tyffy + • • • + 7xi,TXV) dV.
Jy

If there are no non-elastic strains, the problem fits into the framework of the classical
theory of elasticity, and the function which has to be made a minimum is the elastic
strain energy. We find here again, as it could have been foreseen, the theorem of Mena-
brea.

It is of basic importance to note that we can pass from the equation which is the
basis of the classical theory of elasticity, to the equation which appears to be a possible
basis of a new theory of the elasto-plastic equilibrium, simply by replacing the six
elastic strain components by the six components of the total strain. Provided an analogy
exists between the surface conditions involved in each particular problem, the solution
to which the classical theory of elasticity leads for its problems may, therefore, be
transformed into as many solutions of analogous problems of elasto-plastic equilibrium.

In this way we are able to establish a new theory of the strength of beams, the most
important conclusion of which is a new outlook concerning the redundancy of constraints
and the consequent statical indeterminacy of the structures. By the classical theory of
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elasticity one has become accustomed to consider statically indeterminate structures as
extremely sensible to all non-elastic strains. This sensibility was often considered as a
disadvantage, sometimes even as a real danger, since non-elastic strains were beyond
the scope of our calculations and, consequently, of our forecasts. Today, as this scope
has extended to cover the whole field of non-elastic strains and we are able to take exact
account of the effects of these strains and to calculate the changes they will cause in
the state of equilibrium of the structures, we should consider this sensibility rather as
an advantageous and even precious quality of the hyperstatic structures.

Let us consider, for instance, the case of proper plastic strains, that is, the strains
which occur in the outermost fibers of a beam as soon as the elastic limit of the material
has been reached. Our theory points out in the most simple and clear way three types
of effects which such strains may have. The first type concerns exclusively the distribu-
tion of stresses over the section itself and becomes apparent by limiting the stresses in
the fibers where the elastic limit has been reached: this limitation is compensated for
by an increase of stresses in the inner zone of the section, where the strength of the
material was less utilized originally. This new stress distribution is due to the static
indeterminacy of the cross-section itself; it takes place, therefore, even when the beam
is statically determinate, as far as external constraints are concerned. The second type,
on the other hand, involves the static indeterminacy of the diagram of bending moments,
that is, the existence of at least one redundant constraint; it becomes apparent by
limiting the value of the moment in the section where the plastic strains have occurred
and by increasing it in the sections which were less stressed originally. The third type,
finally, is observed only if the constraints involve further static indeterminacy of the
structure; it becomes apparent through a force which modifies the distribution of the
stresses not in one or more sections, where plastic strains have occurred, but in all the
sections of the beam. This force tends to limit that, of the two maximum stresses, which
first has reached the elastic limit, and to increase the other.

It is by a proper combination of these effects, that is, by using each of them in the
most suitable way and by following laws which only a rigorous and complete analysis
of the phenomenon can discover, that nature carries out, within the limits fixed by the
data of the problem, the best possible utilization of the resistance of the material. Be-
sides, it is clear that this behaviour of the structure, which is now at our disposal since
we know its secret, will have a wider field of application and will allow us to obtain
important simplifications of the analysis of stresses in indeterminate structures. There-
fore, we must get used to looking at the problem in a new way.

The classical theory had led us to think of the state of equilibrium of a system sub-
mitted to given loads as something well-determined in terms of these loads. Even in
the statically indeterminate case, in which the equation of statics yields an infinite
number of solutions, the hypothesis of perfect elasticity of the material is sufficient to
determine the solution completely. This result does not represent the truth, however.
Whenever elastic strains are accompanied by even very small non-elastic strains, it is
no longer true that only one solution of the equations of statics is physically possible.
On the contrary, they all are possible, and which one shall come into being depends
upon the occurring of suitable non-elastic strains and of the state of residual stress
connected with them.

But here the field of application widens. The question is no longer about the plastic
strains only and about the part they can play in determining the state of equilibrium.
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As a matter of fact, the study of plastic strains has allowed us to catch a glimpse of
possibilities which can be accomplished in quite a different way. It is sufficient to recall
the modern technique of the prestressed materials, especially of prestressed concrete, to
get an idea of the wide applications of the theorem which we have just derived and of
its use in the study of the strength of materials.
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