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Conversely, derivatives up to the order f(m\x) may be obtained from Eq. (6) by term-
wise differentiation. In the expressions for f(x) and any derivative up to (x), any
sine series represents a function having the value zero at x — ±a, thus facilitating
evaluation at these points. In some solutions Eq. (5) is a convenient expression for
f(m}(x). If desired, Eq. (5) can be modified by adding a term c"x combined with
b'n sin (3nx so that the sine series in this equation also represents a function having the
value zero at x = ±a. Then Eq. (6), modified by this additional term, is

m +1 co

f(x) = X cnx" + 2 («» c°s PnX + bn sin /3nx). (6a)
0 1

Equations (6) and (6a) are special cases of Borel's theorem1 which apply to derivatives
of any finite order up to f(m\x).

The preceding methods of derivation, stated in terms of a single variable x, also
apply completely to a three-dimensional member bounded by parallel planes x = ±a
with assigned boundary conditions. In this case f(x) is replaced by fix, y, z) and the
derivatives are written as partial derivatives with respect to x, f(m) (x) becoming dmf/dxm.
Also in Eqs. (la), (2a), (6), (6a), every coefficient an, bn , c„ , c, while independent of x,
is a function of y and z. For example, in Eq. (la), bn is b„(y, z), and c is c(y, z) =
f(a, y, z)/a. Thus f(x, y, z) and each of its ^-derivatives of finite order can be expressed
as the sum of a finite power series and a Fourier series without discontinuity at x = d=«;
the expressions can, therefore, be evaluated definitely at these boundaries.

JE. Borel, Lemons sur les fondions de variables rbelles, Gauthier-Villars, Paris, 1905, p. 68.

A TAPERED LINE TERMINATION AT MICROWAVES*
By GEORGE J. CLEMENS {City College of New York)

1. Introduction. In the field of ultra-high frequency, one method of power trans-
mission is by means of concentric metallic conductors called a co-axial transmission
line. The maximum amount of power can be delivered over these lines if the impedance
of the load is equal to the characteristic impedance1 of the line. In addition, in various
measurements at ultra-high frequency it is essential to have a matched termination
over a broad band of frequencies. This problem was approached experimentally and
led to the tapered line termination as shown in Fig. 1.

To the left of x = 0, the co-axial line has an inner metallic conductor of radius a. From
x = 0 to x = L, the inner conductor is a glass tube coated with a thin metallic film of
resistive material.2 To the left of x = 0, the outer conductor has a radius b and from
x = 0 to x = L, the outer conductor has a linear taper down to a radius c. Also at
x = L, the inner and outer conductors are short circuited.

*Received Dec. 2, 1948. The results and general method of this paper conform to a section of the
author's doctoral thesis, the research for which was carried on under the direction of Dr. Ernst Weber at
the Polytechnic Institute of Brooklyn.

'J. C. Slater, Microwave transmission, McGraw Hill, 1942, pp. 71-74.
Publication P. B. 6588 (U. S. Commerce Dept.), 1945.
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2. Differential equation of the problem. The voltage and current distribution in a
co-axial line can be written as a pair of differential equations3

dV/dx = IZ, dl/dx = —VY, (1)
where V and I are the voltage and current at any point x on the transmission line,
and Z and Y are the series impedance and shunt admittance per unit length at any

point x. Differentiating each of Eqs. (1) and combining, we obtain a pair of second
order differential equations

d2I/dx2 - (Y'/Y) dl/dx - ZYI = 0,
(2)

d2V/dx2 - (.Z'/Z) dV/dx - ZYV = 0,

where Y' and Z' are the derivatives of Y and Z with respect to x. In general, with air
filling the space between the conductors, we find that

Z = R + iwkL log (r0/ri),

Y = g + i
(3)

log (ro/n)'

where R = resistance per unit length, g = conductance per unit length, co = 2 f =
frequency, kc = 2ire0 = 10 9/18 farads/meter, kL = ix0/2tt = 2 X 10 7 henries/meter,
r0 = radius of the outer conductor between x = 0 and x = L, r{ = radius of the inner
conductor between x = 0 and x = L.

The actual linear tapered line shown in Fig. 1 is now approximated by an exponential
line in which the variation of the outer conductor is given by

r0 = a(b/a) exp (— kx). (4)

We then find that (assuming g — 0, R constant)

Z = R + Z0 exp ( — kx), Z0 = iwkL log (b/a),
(5)

Y = Y0 exp (kx), Y0 = iwkjlog (b/a),

where Z0 and F0 are, respectively, the series impedance and shunt admittance per unit
length of a lossless uniform line (R = g — 0) having a constant outer radius b and
constant inner radius a. The differential equation (2) for I will then become

d2I/dx2 - k dl/dx - [Y0Z0 + RY0 exp (kx)]I = 0. (6)

3J. C. Slater, loo. cit., pp. 60-71.
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If we let

s = [—4/£F0 exp (kx)/k2]l/2 (7)

and set I(x) = sIF(s), we can transform Eq. (2) into

d2W/ds2 + {\/s)dW/ds + [1 - {±Y0Z0/k2)(\/s2)]W = 0. (8)

This differential equation for W(s) is the Bessel equation of order

= db(4Z0F0/fc2)1/2. (9)

Hence, we may write

I(x) = exp (kx/2)[MJyi(s) + NJ.M]- (10)

It should be pointed out that the substitution, Eq. (7), which resulted in the differential
equation (8) was obtained only after a series solution of an integral equation was found.

3. Integral equation. The method of solution for the lossy exponential line by means
of an integral equation was suggested by a "perturbation method" of Schelkunoff.4

If we consider a lossless (R = g = 0) exponential line, then

Y = Ya exp (kx), Z = Z0 exp ( — kx), (11)

and Eq. (2) becomes

(fl/dx2 - k dl/dx - Z0Y0I = 0. (12)

Since k and Z0Y0 are constants, the solution for I(x) is

I(x) = A exp (m1 x) + B exp (m2x),

where

m. = 1/2 [k + (k2 + 4r2)1/2],
r2 = Y0Z0 . (13)

m2 = l/2[fc - (k2 + 4r2)1/2],

Using Eq. (1), we find that

V(x) = — Yq1 exp (—kx^rriyA exp (mix) + m2B exp (m2x)].

We now assume that at x = «, there is a point discontinuity of R de ohms in series
with the line. To the left of x = e

I,)(x) = A exp (m,x) + B exp (m2x),

V0{x) = — Yq1 exp (-fa)[4m! exp (m^) + Bm2 exp (m2x)].

To the right of x = e

Ji(x) = C exp (m-ix) + D exp (m2x),

Vi(x) = — Yo1 exp ( — kx)[mxC exp (m^) + ra2Z) exp (m2x)].

(14)

(15)

4S. A. Schelkunoff, Electromagnetic waves, D. Van Nostrand Co., 1943, ch. 4.
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At x = e, the boundary conditions for V and I become

70(e - 0) = L(e + 0),
(16)

70(e - 0) = 7x(e + 0) + 7(e),

where 7(e) = I(e)R de. We may now determine the constants C and D in terms of A
and B. If we assume an infinite distribution of discontinuities along the line, we obtain
the following integral equation for I:

I(x) = I0(x) — RY0(m2 — mx)_1 / 7(e) exp (fce)
(17)

•{exp [m^x — e)] — exp [m2(x — e)]} de.

In Eq. (17), R is constant.
Using Picard's method of successive substitution5 and rearranging terms, we find

the infinite series

kx) = e exp (mix)\ i + +P exp (kx) P2 exp (2kx)
2mifc /^mlk2(k + 2

,  P3 exp (3fcr) 1
~l~ \2m,ik3{k + 2m1)(2k + 2m1) J K '

, „ , ,fi , P exp (kx) . P2 exp (2kx)+ F exp (^)[_l + + ^ + -J,

where E and P are constants and P = PF0 . With a further rearrangement of the series
and a change of variables we obtain the Bessel solution of Eq. (10).

4. Comparison of exponential and linear tapered lines. In order to compare the expo-
nential and the linear tapered lines, we must find the input impedance to the exponential
line. This is obtained by using Eq. (1) and finding the quotient V(x)/I(x) at x = 0.
From Eq. (10) we find that

V(x) = (—1 /Y){M exp (fcc/2)[(fc/2)/Js) + J'^ds/dx)]
(19)

+ N exp (kx/2)[(k/2)J„a(s) + J JXs)(ds/dx)]}.

Applying the recurrence formulas for Bessel functions,6 and using the relation (Eq. (7))
ds/dx = ks/2, we find that

V(x) = [~k exp (kx/2)/2Y]{M[(Vl + 1 )/„(s) ~ sJVl+1(s)]
(20)

+ N[(v2 + 1 )JyXS) ~~ s/„a + l(s)]} .

Since the transmission line was shorted at x = L, we find that 7(L) = 0, and from
Eq. (20) we have that

6E. G. Keller, Mathematics of modern engineering, vol. 2, John Wiley, 1942.
6N. W. McLachlan, Bessel functions for engineers, Oxford Univ. Press, 1941, p. 158.
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M/N = ~[(v2 + 1 + 1 )J,Asl) - sLJ,1+1(sL)],

SL = [-4RYok'2 exp (JcL)]1/2.

Then the input impedance becomes

Zin = V(0)/m = T( 1 - U)/(1 - W),
where

= r2 Y0 L
i.v2 ~f~ ̂  ' -1 ..(*,) SqJ ya+lOO

J v a (®o)

JT   [0*2 ~1~ 1)*^ fa (Sl) SlJ y3+l(^Z/)][(^l ~f~ ^-)J Vi(Sq) So J Vi +l('^n)] /nn\
U ~ [(*>: + 1)J„,(sL) - «LJF1+1(8£)][(^ + l)J„(So) - S„J„, + 1(so)] ' ^ '

irr   [(^2 ~t~ 1)^vX®l) SlJyj + l(^L)]t/y,(So)
^ ~ [(Vl + 1)JVi(Sl) - SLJVi+1(SL)]J„ASo) *

A measure of the input impedance of a termination is the voltage standing wave
ratio7 (VSWR) produced on the concentric co-axial line to which the impedance is
attached. The VSWR is the ratio of the maximum voltage to the minimum voltage
between the inner and outer conductors. If the impedance given by Eq. (22) is the termi-
nating impedance on a transmission line having a characteristic impedance Zc , then
as shown by Slater,3 the VSWR produced by this termination is given by

VSWR = (1 + | K |)/(1 - | K |),
(23)

K = (Zc — Zin)/{ZC + Zia).

In general, Zc , Zin , and K are complex quantities. In order to check the; approximating
exponential termination against the linear tapered termination, it would be necessary
to calculate values for Bessel functions of complex argument and indices. At present
there are no such tables available. Asymptotic expansions in the literature as well as
those mentioned in Watson's treatise on Bessel functions8 are either not applicable or
involve series which are no more rapidly convergent than the actual series themselves.
Since we wish to determine how the input VSWR varies with the wave length of the
impressed frequency, it is necessary to modify Eq. (22) in terms of X, the wave length.
Since

Tl = Z0Y0 = -(2,r)7Wo = — (2ir)2/V = -(27T/X)2,
we find from Eqs. (7) and (9) that

vU2 = ±i[(4WkX)2 - 1]1/2,

(24)
s = (2/k) exp (mt/4)[27t/£ exp (kx)/\Zc]w2.

7J. C. Slater, loo. ext., pp. 48-54 and King, Mimno, Wing, Transmission lines, antennas, and wave
McGraw-Hill, 1945, eh. I.

8G. N. Watson, Treatise on the theory of Bessel functions, Cambridge Press, 1945.
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The numerical check is made against the linear tapered line having a length of 5.5
centimeters and a total resistance of 59 ohms. This termination is connected to a co-
axial line having a characteristic impedance of 46.4 ohms. (a = 0.406", b = 0.1875").
If k is equal to 1.3/L, a comparison of the radii of the tapered outer conductors is given
in Table 1.

TABLE 1

Radius of Outer Conductor

x/L Linear Taper Exponential Taper
0.0 .4067 in. .4067 in.
0.1 .385 .370
0.2 .364 .342
0.3 .342 .317
0.4 .321 .301
0.5 . 300 . 282
0.6 .278 .269
0.7 .257 .256
0.8 .236 .246
0.9. .214 .238
1.0 .193 .232

If in Eq. (24) we use the following values:

k = 1.3/0.055 = 23.636,
R = 59/0.055 = 1072.7 ohms/meter,

Zc — 46.4 ohms,

we will find the following comparison between the measured VSWR for the actual linear
tapered line and the calculated VSWR for the exponential line.

TABLE 2

Measured VSWR Calculated VSWR
X (meters) / (megacycles) Linear Tapered Line Exponential Line

260.303 990 1.11
0.2796 1073 1.12 1
0.2545 1179 1.12 1
0.2389 1256 1.12 1
0.2108 1423 1.14 1
0.1993 1505 1.17 1
0.1200 2500 1.13 1
0.1111 2700 1.12 1
0.1001 2997 1.12 1
0.0899 3337 1.11 1
0.0805 3728 1.08 1
0.0756 3968 1.09 1

29
31
33
33
27
26
19
18
16
13
14

5. Discussion of results and design factors. The results of Table 2 indicate a rela-
tively flat response for the VSWR over a broad band of frequencies. The differences
between the calculated and the measured values are due to the following reasons:

1. Since the exponential line cannot duplicate exactly the linear tapered line, we
will of necessity have a slight discrepancy. Now it is much more difficult to machine a
tube with an exponential variation for its inner radius than to machine a straight taper.
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Moreover, since the exponential taper indicates a conservative result, it would be more
practical to use the linear taper.

2. An assumption was made in setting up the original differential equation. In a
rigorous solution of the electromagnetic fields existing between a pair of concentric
cylinders,9 only the principal mode will be transmitted if the wave length of the im-
pressed field is greater than 2w(b — a), where b is the radius of the outer conductor and
a is the radius of the inner conductor. In the principal mode, the electric field lines are
perpendicular to the inner and outer conductors, while the magnetic field lines are
concentric circles about the axis of the inner conductor. When these conditions exist,
the differential equations (1) apply. In the case of the tapered line, in order to satisfy
rigorously the boundary conditions, other modes of propagation will have to exist.
Fortunately, if the taper of the outer conductor is not too abrupt, it is possible to neglect
the higher modes. Thus, this is another source of error between calculated and measured
values.

3. The inner conductor of the lossy tapered line is a glass tube coated with a metallic
film. In our solution, we neglected to take into account the fact that the electric field
penetrates through the film. As shown by Griemsmann,10 for a uniform line, the effect
of this field can be expressed as a correction factor in the characteristic impedance and
the attenuating factor of the transmission line. He shows that the first order correction
for the field inside the film leads to the following expressions for the characteristic
impedance and the attenuation factor:

= Ro{l - iX - [(K2 - l)/4 log - l/2](/3bX)2},/2,
(25)

r = i/9{l - iX - [(if2 - l)/4 log K - 1/2]036X)2}i/2,

where /3 = 2x/X, X = R\/2irR0 , K = a/b, and R = resistance per unit length, X =
wave length, R0 = characteristic impedance of the lossless uniform line, b = radius of
the inner conductor, a = radius of the outer conductor. For the size of the transmission
line and resistance used in this problem, the factor [(K2 — l)/4 log K — l/2](ftbX)2
can have a value of 0.05 at the lower frequencies but is negligible at the higher fre-
quencies. The change in Zc and r could be interpreted physically as a change in the
size of the outer conductor; therefore, the values in Table 1, indicating the linear and
exponential line outer conductor radii, may be separated more than indicated. Since
this phenomenon is more evident at lower frequencies, it may account for the further
discrepancy between calculated and measured values at lower frequencies than at higher
frequencies.

In the design of a linear tapered line termination, a fairly flat and low YSWR can
be obtained, if the following design constants are taken into account.

1. k in the exponential of Eq. (4) has a value of 1.3/L, where L is the length of the
taper in meters.

2. In Eq. (22) if

L/\ ^ 0.62 and Rt\/2irZcL ^ 0.2,

9J. C. Slater, loo. cit., p. 162.
10J. W. K. Griemsmann, Design of a lossy co-axial transmission line, Doctoral Thesis, Brooklyn Poly.

Inst., June, 1946.
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where L = length of the taper in meters, X = wave length in meters, Rt = total resist-
ance of the inner conductor = RL, Zc = characteristic impedance of the uniform line
having an outer radius b and an inner radius a of the input of the tapered line, then

T ^ Zc .

3. If 4x//c\ 6, we will find that the series for U and W can be approximated by-
exponentials. In addition, if R[exp (kL) — 1 ]/kZc Si 3.5, then

0.96 ^ (1 - U)/(l - W) ^ 1-04.

Since kL = 1.3, and exp (kL) = 3.667, we find that (1 — f7)/(l — W) is nearly unity if

B,/Z. ^ 1.7.
Thus it can be stated that to satisfy the lower frequency range with a low VSWR,

the film length must be long (L = 0.6X), and the total resistance must be near the Zc
for extremely low frequencies. In the upper range of frequencies, we should have a total
resistance of 1.7 times the characteristic impedance Zc . Thus we must conclude for
practical reasons, that it would seem more advisable to use the tapered line for fre-
quencies above 1000 megacycles. Of course, if the restriction on the VSWR could be
lessened to permit a VSWR of 1.2 or 1.3, then a larger range of frequencies could be
covered by the linear tapered line.

CAPACITY OF A PAIR OF INSULATED WIRES*
By W. HOWARD WISE (Bell Telephone Laboratories)

1. Introduction. This problem has been treated in elegant fashion by Craggs and
Tranter.1,2,3 Their first two papers employ a conformal transformation of the free space;
the third paper works with charge distributions. They end up with an infinite deter-
minant of value zero in which the unknown capacity appears in one element, and
conclude that "satisfactory numerical approximations can be obtained by keeping only
the first few rows and columns".3

This note is written to remark that the end result of a straightforward attack with
bi-polar coordinates is

C = £„/4<f log - + ^ log x - £ k\, (1)I X e v »-i )

where C = capacity, e0 = dielectric constant of air, or other material outside the
jackets, e = dielectric constant of jacket material, s = interaxial separation, x = outer

*Received Feb. 7, 1949.
'J. W. Craggs and C. J. Tranter, The capacity of twin cable, Q. Appl. Math. 3, 268-272 (1945).
2J. W. Craggs and C. J. Tranter, The capacity of twin cable—II, Q. Appl. Math. 3, 380-383 (1946.)
3J. W. Craggs and C. J. Tranter, The capacity of two-dimensional systems of conductors and dielectrics

with circular boundaries, Q. J. of Math. (Oxford) 17, 138-144 (1946).


