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HEAT CONDUCTION IN A MELTING SOLID*

BY

H. G. LANDAU**

Ballistic Research Laboratories, Aberdeen Proving Ground

1. Introduction. There are a number of problems in heat conduction in which one

material is transformed into another with generation or absorption of heat. Examples

are the melting or freezing of a solid and the progress of a temperature-dependent

chemical reaction through a solid. Some of these problems have been treated under

various assumptions.1 The problem considered here is the melting of a solid when the

liquid is removed immediately on formation. This problem seems to have been con-

sidered before only by Soodak,2 who gave the steady state rate of melting and carried

out numerical integration by finite differences for some special values.

We first state a general problem and a few results. Then the problem is specialized

to make possible, a more detailed treatment. For the case of a semi-infinite melting3

solid with its face heated at a constant rate, the exact steady state solution is derived,

and the problem is put in a form involving only a single parameter. Numerical in-

tegrations have been carried out for this case for several values of the parameter ex-

tending over the entire possible range of the physical constants involved.

2. Statement of problem. We consider one-dimensional heat conduction in a solid

which initially extends from x = 0 to x = a. The face x = a is insulated, while heat

flows in through the other face at a rate H(t) per unit area. If heating continues long

enough, the face at x = 0 reaches the melting temperature Tm and melting commences.

The liquid is removed immediately on formation, say by being blown away, so that

the face of the solid, which was initially at x = 0, moves inward and at time t is at the

position x — s(t). If the heating rate decreases enough, the face temperature may drop

below Tm so melting stops temporarily and s(t) remains constant; then melting may

resume if H{t) increases sufficiently. The temperature of the solid T{x, t) and the thick-

ness melted s(t) are the quantities we wish to find.

In addition to the terms defined above we use the following:

c = specific heat, p = density, k = thermal conductivity, x = distance from initial

position of heated face, T0(x) = initial temperature distribution, L = latent heat of

fusion.

Then the equations describing the process will be as follows:

dT
CpTt = Tx{k§£)> l>0, (2.1)
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Several references are given in H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids, Oxford,

1947, p. 71. An additional reference is L. I. Rubinstein, Isvestia Akad. Nauk SSSR, Ser. Geograph.

G6ophys. 11, 37-54 and 489-496 (1947).
2H. Soodak, Effects of heat transfer between gases and solids, Ph.D. thesis, Duke Univ., Durham,

N. C. (1943).
3Although the term "melting" is used, the treatment in this paper would apply if the phase change

were directly from solid to gas by sublimation.
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T(x, 0) = T0(x) < Tm , 0 < x < a, t = 0, (2.2)

— = 0, x = a, t> 0, (2.3)

H(t) = -k + PL j x = s(<), f > 0. (2.4)

The last equation expresses the fact that the heat input H(t) equals the rate of heat

flow into the solid plus the rate of heat absorption by melting. Condition (2.4) can be seen

to hold both during melting and non-melting if we specify that at the heated face

x = s(t)

/7o

!>0, for T(s(t), t) = Tm, (2.5)

1=0, for T(s(t), t) < Tm . (2.6)

The essential difficulty in the problem is in the determination of the unknown

moving boundary s(t). The problem can be seen to be non-linear because two different

heat input functions, fhit) and H2(t), would give different boundaries, s^t) and s2(t),

so that the two solutions would not apply in the same region in the x,t plane, and the

solution for the sum Hi(t) + H2(t) cannot be obtained by addition. In this paper the

existence and uniqueness of T(x, t) and s(t) are assumed.

The moving boundary can be eliminated by the transformation £ = (a — x)/[a — s(/!)].

Then the boundaries are fixed at £ = 0 and £ = 1. Equations (2.1) to (2.6) become

f dT , £ ds dT~\ 1 d (, dT\ ^ n
Cpldt + a - s dt d£ J (a - s)2 d()' * ' '

T(x, 0) = T„(Z) < Tm , 0 < J < 1, t = 0,

rJT7
^ = 0, £ = 0, t > 0,

■+PLJt>

Jt > 0, for T{ 1, t) = Tm>

Jt = 0, for T(l, t) <Tm>

= 1, t > 0.

With the equations in this form the non-linearity of the problem can be seen from

the fact that s and its derivative, which occur in the coefficients of the differential

equation, depend on dT/d£ at £ = 1. We do not use the equations in the above form

but they might be useful for numerical integration of the general problem.
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Gauss's theorem applied to the heat conduction equation (2.1) gives

° - //[I(*S) -"f]dt - LbIf■»+"T4 <2j>
D

where D is any region in the x,i-plane to which the theorem applies, and C is its boundary.

Applying (2.7) to the region bounded by the lines t = 0, t = ti , x = a, and the curve

x = s(f), we obtain for its two terms:

Lktodt = /„" [H(°_ pL I]dt = /„" m dt ~pLs(ti)'

f cpT dx = [ cpT0(x) dx — f cpT(x, U) dx — [ cpT(s(t), t) ̂  dt.
J c Jo J titi) Jo L dtJ

In the last integral ds/dt = 0 except when T(s(t), t) = Tm ; this integral, therefore, equals

cpTms(ti), and we have

f H(t) dt = p f [cT(x, t) — cT0(x)] dx
Jo

+ P[(L + cTm)s(t) - /o"" cT„(x) dx],

(2.8)

where we have dropped the subscript 1 from tx . This equation, as well as (2.7), holds

when k and c are functions of T. It can be seen that (2.8) equates the total heat inflow,

up to time t, to the change in heat content of the remaining solid plus that of the liquid.

Since T(x, t) < Tm , the first term on the right of (2.8) is bounded. Thus if ft, H(t) dt

increases to large enough values, then s(t) must finally reach its largest possible value,

s(t) = a; that is, if heating continues long enough the entire solid melts. The time,

i, , when this occurs will be given by

J H(t) dt = apj~L + cTm — a-1 J cT0(x) dxj. (2.9)

The rate of melting at this time can be obtained from (2.3), (2.4), and the con-

tinuity of dT/dx. The result is that at the time t, when melting is completed,

ds£) = (2.10)
dt pL

During melting, dT/dx < 0 at x = s(<), otherwise T(x, t) > Tm for some x. Conse-

quently from (2.4), ds/dt < H{t)/pL. Hence if H(t) is non-decreasing, the melting rate

will reach a maximum at the time t, .

The value of T(x, t) during any period when there is no melting is not difficult to

find, under the assumption that c and k are constant. This value can be found by various

well-known methods such as the use of the Laplace transformation or the method of

sources and sinks.4 The result is that before melting starts

'Carslaw and Jaeger, loc. cit., ch. X.
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Tix, I) = (46V1)-1" £ TJH £ |exp[-fe'|+2°°)']

+ exp [-fa + t-^ + W]} i£ p.n)

+ (A»r /; Hit - r) _E «*P %

where b2 = fc/cp is the thermal diffusivity. An equivalent expression in the form of a

Fourier series could also be written. The time when melting commences, t = tm , will

be given by Tm = T(0, tm). If melting stops at any later time t = h , then during the

period when T{s{tx), t) < Tm , the temperature will be given by the expression similar

to (2.11) but with the origin of distance and time coordinates at .s(i,) and t, .

T{x, t) = [4b\{t - <,)]"1/2

+ exp
[x + £ — 2 (n + l)a + 2ns(Q]2 j

+ (irfccp)"

4b\t - <0
d% (2.12)

dr

(r - O1

Instead of the heat input rate H(t) being given as a function of time, the problem

could also be stated with heat input defined by the usual "radiation" condition as

h(t)[TJl) — T(s(t), <)], where Ta is the temperature of the radiating medium. If Tg is

large compared with the surface temperature, the two statements will be practically

equivalent. In the rest of this paper we take H as constant, which is the same as putting

h and T„ constant during melting.

3. The semi-infinite solid. We now consider a much more special problem. In many

cases occurring in practice the melting will proceed only a relatively small distance

into the solid, so that it will be sufficiently accurate to take a = °o; that is, a semi-

infinite solid. At the same time we assume that the thermal properties c and k, heat

input rate H, and initial temperature T0 are constant with // > 0. In some applications

the variation of these quantities may be important. Even for these cases the results

given here are useful as an approximation, and in showing how the progress of the

melting depends on the physical quantities involved. By assuming these parameters

to be constant we can also give a more detailed treatment which covers the entire range

of physically possible values of the parameters.

The condition (2.3) now becomes

g_>0, x-^co, t> 0 (3.1)

which is equivalent to

T^T0, x-><»,t> 0. (3.2)
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This equivalence can be seen from

l({¥J^d< = SX£'d* + T*£d>] <3-3>
D

applied to a region D for which x is sufficiently large. Equation (3.3) like (2.7) is a form

of Green's theorem for the heat conduction equation,5 and can be obtained by applying

Gauss's theorem to d(T2)/dt — b2d2(T2)/dx2 where T satisfies Eq. (2.1).

The solution of the problem before melting starts is now, either from (2.11), or

directly,6

T(x. 0 - T. + exp (-£) - erfc (^)_

(3.4)

-t'+hs'"ierfc

where ierfc is the notation for the integral of the error function complement introduced

by Hartree.7

From (3.4) the time when melting starts, tm , is given by

= T0) = (P | bmj. (3.5)

Here

m = T^_cjj(36)

is the ratio of the heat content change from T0 to Tm to the heat of fusion, multiplied

by a convenient factor. By the transformations given below the whole problem during

melting is reduced to a form in which the only parameter is m.

In this semi-infinite case it is possible to eliminate the moving boundary by intro-

ducing a new distance variable x — s(t), the distance being measured from the moving

face of the melting solid.8 Since we now have left to consider only the melting process,

we shall measure time from tm . We also make the variables dimensionless so as to obtain

the equations in the desired simplified form. The new variables are

T — T
V = v(z, y) = 1/2,rp m \> (3.7)

\1- m J- 0/

_ X - 8(f) , .

2 - hiT ' (3>8)

6E. Coursat, Cours d'analyse mathematique, vol. 3, Gauthier-Villars, Paris, 1915, p. 308.

6R. V. Churchill, Modern operational mathematics in engineering, McGraw-Hill, New York, 1944,

p. 107.
7D. R. Hartree, Properties and applications of the repeated integrals of the error function, Mem. and

Proc. Manchester Lit. and Phil. Soc. 80, 85-102 (1935-36).
8Since x — s(t) = limo^o a[l — (a — x)/(o — s(<))l, this is a special case of the transformation defined

by { above, not an entirely different transformation for eliminating the moving boundary.
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y = j-~l> (3-g)

« = (3-10)

da _ pL

dy~ H

Then the equations for the melting process become

dv d2v , , . dv

dy = d? + Jz

"-S-fS- (3-n)

^ = ll + m^y) t~> z > °> v > °> (3-12)

v = ierfc ^|j, z > 0, y — 0, (3.13)

v —»0, z—>oo, y > 0, (3.14)

1=-2^ + m(v), 0 = 0, y > 0, (3.15)

v = 3 = 0, y > 0. (3.16)

This form for the equations is convenient because there is only one parameter m,

and it occurs only in the differential equation (3.12); the initial and boundary conditions

contain no parameters. This form for the equations, therefore, greatly simplifies the

numerical integration which is described later.

Equation (3.15) should be regarded as the definition of the unknown reduced rate

of melting, /*(?/). It is possible to eliminate n from the equations by substituting its value

from (3.15) into (3.12). Equation (3.12) then becomes

S-S+4i+2^]I< <*>*>
which is clearly non-linear.

4. Steady state solution. We first note that there is a steady state solution for the

system (3.12) to (3.16); that is, the temperature of the melting, semi-infinite solid

approaches a state characterized by the migration inward at a constant velocity of a

fixed temperature distribution. It is found from the numerical integration that dv/dy > 0.

Since v < x_1/2 it follows that dv/dy —► 0 as y —>oo and that v tends to a steady state.

If we put dv/dy = 0, then n is constant, say n = n. , the constant steady state value

of the reduced melting rate. From (3.12), (3.14), (3.15) and (3.16) this steady state is

found to be given by

v -* v(z) = ir-1/2 exp (—mn.z), (4.1)

with

H. = (1 + 2mir~1/2)~1. (4.2)
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For the steady state rate of melting in terms of the original variables, this gives

— —» V =  —  (4 "ft
dt P[L + c(Tm - To)]' { '

which is also obvious physically. This does not give the steady state value for the thick-

ness melted, but if we use, as a first approximation, a constant rate of melting, then

the steady state thickness melted is approximately,

a(y) ^ H.y, or s(t) ^V(t — tm), (4.4)

and the steady state temperature distribution in the original variables becomes

T £* T0 + (Tm - To) exp {-Vb~2[x - V(t - <„)]}• (4-5)

Actually the melting rate is initially less than its steady state value, so that (4.4)

and (4.5) give values for the thickness melted and the temperature which are too large.

We can obtain the exact steady state value as follows.

Equation (2.8) written in terms of the reduced variables is

<r(y) = He(y + 1 - 2 Jg v(z, y) dz^J. (4.6)

Then by use of (4.1), the steady state value of <r is

<r(y) —> °.{y) = n.(y + 1) - 2/ir1/2m, (4.7)

or correspondingly

s(t) ->Vt- {k/H)(Tm - To), (4.8)

and the exact steady state value for T is

T -» To + (Tm - To) exp {-Vb~2[x - Vt + k(Tm - T0)/H]\. (4.9)

Since v(z, y) increases with y, it can be seen from (4.6) that the steady state value

gives a lower bound for the thickness melted. Also since

f v(z, 0) dz = f ierfc (z/2) dz = 1/2,
J 0 J 0

(4.4) gives an upper bound; that is,

V(t - tm) > s(t) >Vt- (k/H)(Tm - T0). (4.10)

The difference between these two bounds is

k(Tm -

H L1 4 V^c{Tm-ToJ J'

In the applications, this quantity is often small; then the steady state value is a good

approximation of s(t) for all t > tm .

By taking derivatives of (4.6) we find that the melting rate is always less than its

steady state value:

rjo

n(y) < m. , or jt < V. (4.11)
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Physically, this is obvious since the heat content of the solid is increasing during the

melting.

5. The case m = 0. The parameter m in Eq. (3.12) can have any positive value.

The value m = 0 does not correspond to a physically realizable situation but is a limit

which is approached when the latent heat L becomes large. In this case, the system

(3.12) to (3.16) can be solved in terms of tabulated functions. This solution is of value

since it is one limit of the set of solutions for 0 < m < <». Also the solution for m = 0

is an approximation to that for any finite m when y is sufficiently small, because m(0) = 0.

For m = 0 the equations are linear. Equation (3.10) does not enter into the solution

but is merely an equation for determining n(y) from the solution. The solution for

m — 0 can be written as

v0(z, y) = t 1/2 erfc {z/2y)

+ I ierfc (l) {ex» ~ exp
fr + r)2

4 y
df. (5.1)

The indicated integrations are rather tedious; hence we omit the details and give only

the final result.

vo(z, y) = erfc (z/2y) — (z/ir) arc tan (y~x/2)

+ L(y + 1 )M1/2 exp V-z/^y + 1)] erf {z/2[y(y + 1)]1/2} (5.2)

+ 22 W(z/[2(y + 1)]1/2, y~1/2),

where

W(a, (3) = (2tr)-1 [ [ exp [-(x2 + y2)/2] dy dx
J o Jo

is a tabulated function.9

This gives for the reduced rate of melting

Mo(y) = (2/tr) arc tan (y1/2), (5.3)

and hence

0o(2/) = (2/t)[(2/ + 1) arc tan (y'2) - yl/2], (5.4)

which as stated above are approximations to n(y) and a(y) for finite m when y is small.

Since v0(z, y) can be used to start the numerical integration for 0 < m < 00; it is

useful to have simpler expressions than (5.2). For y > 0, v0(z, y) is analytic, and we

can expand it in a power series in z. By use of dv„!dy = d2v0/dz2 and dv0/dz =

— x_1 arc tan (y'1/2) at z = 0, this expansion is

co jn «2n + 1

,.(Z, y) = x-1^2 - tt-1 g Tyn [arc tan (j/"1'2)] (2n + 1}!

_ -1/2
= 7r z- [arc tan (y~^) - 12yJ(y + +•••], y > 0.

(5.5)

9C. Nicholson, The probability integral for two variables, Biometrika 33, 59-72 (1943). Also, J. B-

Rosser, Theory and application of fS exp (— x2) dx and Jo exp (— p2y2) dy Jo exp (— x2) dx, Mapleton

House, Brooklyn, 1948.
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Also for 2/y 1/2 large

W(z/[2(y + 1)]1/2, y~1/2) S \ erf [z/2{y + 1)1/2]

- ^ arc tan (y1'2),

so that we get

v0(z, y) = (y + 1)1/2 ierfc [z/2(y + l)1/a]. (5.6)

This relation shows that when melting begins, the temperature in the interior is nearly

the same as it would be without melting.

6. The case to = <». The case L = 0, which makes m = , is of interest for its

physical applications and also because it gives the other limit to the range of to. In

fact for steel, with T0 as room temperature, to = 27, which is "practically infinite" in

the sense that the temperature and melting rates will be very close to those for to = <*>.

For L = 0, the definitions of a and /i in (3.10) and (3.11) must be modified. We

introduce the modified quantities

2 Hs ,n
01 = TOO- = -172 TTff, nrTT) (O-l)

7T K{lm — 1 o)

(6-2)

which are independent of L. In the system (3.12) to (3.16), Eq. (3.12) is now

g = S + %)|> *>0, y>0, (6.3)
and (3.15) which came from (2.4) is now

l=-2g, 2 = 0, y> 0. (6.4)

There is now no equation defining X, similar to (3.15) for n- However, from (3.16),

dv/dy = 0 at z — 0, so that if the derivatives are continuous at z = 0, y > 0, Eq. (6.3)

gives

0 + Hy) Jz = °, 2 = 0, y > 0,

or by use of (6.4)

\(3,) = 2 0, 2 = 0, y > 0, (6.5)

which now takes the place of (3.15). The modified system of equations is then (6.3),

(3.13), (3.14), (6.5), (3.16).
For numerical integration this system is unsatisfactory because the determination

of X from (6.5) requires the calculation of a second derivative. Since this is not easily

done with accuracy, we consider instead a derived system for dv/dz.
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If we put

w(z, y) = -2 Jz> v = ir~1/2 - | ^ «(f, y) df, (6.6)

then w(z, ?/) will satisfy

du d\ . . , . du _ „ _
^ = ^? + X(2/)^) z>0, 2/ > 0, (6.7)

u = erfc (z/2), z > 0, y = 0, (6.8)

w —> 0, z >°° j y > 0, (6.9)

AG/) = -g, z = 0, 2/ > 0, (6.10)

u = 1, z = 0, t/ > 0, (6.11)

and it is easy to verify that if u satisfies (6.7) to (6.11) then v will satisfy (6.3), (3.13),

(3.14), (6.5), (3.16).
An important difference between the present case, L = 0, and L > 0, is that for

L = 0 the melting rate is not zero at the start of melting; instead we now have

A(0) = 7r"1/2 (6.12)

corresponding to

<fe(Q _ 2H
dt itcp{Tm - Toy

For L > 0, ds (tm)/dt = 0 was necessary for continuity of dT/dx mt&tt = tm , but with

L = 0 this condition is not necessary, as can be seen from (2.4).

The steady state solution is now instead of (4.1),

v, = x"1/2 exp ( —x1/2z/2), (6.14)

and the steady state values of X and a> are

X. = tt1/2/2, and co. = \,(y + 1 - 4/t). (6.15)

The steady state equations in terms of the original variables are unchanged except that

now L = 0.

7. Numerical integration. Form > 0, the solution was obtained by numerical inte-

gration using finite differences. We describe the method used, but do not go into a dis-

cussion of methods for numerical solution of the heat conduction equation and their

convergence and stability. These questions have been discussed by several writers,10

although much remains to be done, especially for non-linear problems.

10R. Courant, K. Friedrichs and H. Lewy, Uber die Partiellen Differenzenglieichungen der Mathema-

tischen Physik, Math. Ann. 100, 32-74 (1928); N. R. Eyres, D. R. Hartree, et al., The calculation of variable

heat flow in solids, Proc. Roy. Soc. Lond. (A) 240, 1-57 (1946); C. M. Fowler, Analysis of numerical
solutions of transient heat-flow problems, Q. Appl. Math. 3, 361-376 (1946); J. Crank and P. Nicolson,

A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction

type, Proc. Camb. Phil. Soc. 43, 50-67 (1947). Unpublished methods proposed by J. von Neumann.
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We use Az and Ay for the intervals in z and y, and write v(i, j) for v(z, y) = v(iAz, jAy)

and for n(jAy). The time derivative is approximated by a forward difference ratio

and the space derivatives by central difference ratios,

S (Ay)'1 [v(i, j + 1) - v{i, j)], (7.1)

£* (2A*)"1 [v(i + 1, j) - v(i - 1, j)], (7.2)

S (A*)"2 [v(i + 1, j) - 2v{i, j) + v(i - 1, j)\, (7.3)

so that Eq. (3.12) is approximated by the difference equation

v(i, j + 1) - v(i, j) = \v(i + 1, j) - 2v(i, j)

+ v(i - 1, j) + mnj ~ [«(« + 1, j) - v(i - 1, j)]

(7.4)

It is known that the solution of the difference approximation to the heat conduction

equation will not be stable unless the ratio Ay/Az2 < 1/2. Stability means that errors

which occur in the process of solution, such as rounding-off errors, are damped out

instead of being magnified. We then take Ay/Az2 = 1/2, which simplifies (7.4) by re-

moving the term in v(i, j), so that the difference equation becomes

v{i, j + 1) = |(1 + mmAz/2)v{i + 1, j)

(7.5)
+ K1 - mlxiAz/2)v(i - 1, j).

To compute n, a third order formula for dv/dz at z = 0 was used. Then from (3.15)

and (3.16),

M)- = 1 + (Az)-1[—11/3tt1/2 + 6.(1, j) ~ 3.(2, j) + f.(3, j)]. (7.6)

The computation proceeded along "lines," the values for fixed j and all i being computed

before going on to j + l. The initial values are given by (3.13), or we can start with

j = 1 using the solution for m = 0, Eq. (5.2). Having v(i, j), (7.6) is used to find ju,

and then (7.5) is used to compute v(i, j + 1). The computation was carried to values

of i large enough to make v(i, j) < 5 X 10~7.

The calculations were carried out partly on the Bell Relay Computer and mainly

"on the IBM Relay Calculator11 at the Ballistic Research Laboratories for m = 0.2,

1, 2, 5, 10 and m. The modifications necessary for m = <» are clear from Sec. 6.

In the applications of the results a very high accuracy in n and a- is not needed.

The calculations were carried out so as to give n (which is the quantity with the largest

"These machines are described in F. L. Alt, A Bell Telephone Laboratories computing machine, Math.

Tables and Aids Computation 3, 1-13, 69-84 (1948), and W. J. Eckert, The IBM pluggable sequence
relay calculator, Math. Tables and Aids Computation 3, 149-161 (1948). «
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error) generally correct to three significant figures, although the third figure was some-

times in doubt. The accuracy was checked in various ways, especially by using Eq. (4.6).

Since n and v change rapidly at first, it was necessary to start the computation with

small values of Az and Ay. When the rate of change decreased, the interval size had to be

increased to keep the computation from becoming too lengthy. As the steady state

solution was approached, it would have been desirable to use relatively large intervals

of reduced time Ay, but the limitation Ay/Az < 1/2 would then have required Az to

be so large as to introduce serious errors. The limitation on the relative size of the time

and the space interval could have been avoided by using a more complicated difference

approximation.

To extend the values of p. to the steady state value, a semi-empirical method was

used, as follows. If in Eq. (3.12), mn(y) is replaced by a constant r, then the system (3.12),

(3.13), (3.14) and (3.16) can be solved by using the substitution v = w(z, y) exp [ — rz/2 —

r2?//4], to eliminate the term r dv/dz. The solution is then,

«. V> - '-'-^.7/^] JT ierfc (f/2)e- {exp

, ^ r [V v z2 1 di7
+ 2-,l _7-W=j]¥=— v)

The second term v2(z, y) can be evaluated as

»2(z, y) = (4tt)~ (7.8)

As y —s- 00, the first term in (7.7) approaches zero, while v2(z, y) —» x~1/2e~", the steady

state solution. We then use dv2(0, y)/dz to indicate the dependence of u on y, for y large

enough so that n is almost equal to . From (7.8)

^2(0, y)
= —TV

-l/2l
[r + y 1/2 ierfc (ryW2/2)], (7.9)

dz

Putting r = mix, and using (3.15) we have

yu ̂  M.[l — 2(iry)~1/2 ierfc (mnyu'2/2)\,

(7.10)
^ yu„[l - 2(iry) 1/2 ierfc (mfiey1/2/2)],

for large y.

It was found that for y large the computed values of n varied with y in this way,

except that the second term in (7.10), which is a small correction term, had to be multi-

plied by a constant depending on m. Thus m could be extended to arbitrarily large y

with an error which is within the desired limits, because the extension was started for

fx within a few percent of n, .
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Figures 1 and 2 show the values of the melting rate plotted against time for m = 0,

0.2, 1, 2, 5, 10 and <». In Fig. 1 it can be seen that for all m, the values of n approximate

Fig. 1. Rate of melting of the semi-infinite solid for various values of m:

m — irl,2c(Tm — To)/2L, ds/dt = rate of melting, p - density, L —

latent heat, H = heat input rate per unit area, t = time, tm = time

when melting begins.

Fig. 2. Rate of melting as fraction of the steady state rate:

V = H/p[L + c(Tm — To)], steady state rate of melting.

those for m = 0 for small values of y, and that fx approaches its steady state value more

rapidly the larger the value of m. In Fig. 2 the ordinate is p., (for m = it is A/A.)
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so that all the curves approach unity as an asymptote. In this figure it can be seen that

as m becomes large fi/fi. near y = 0 approaches the value for m = °°, although the value

of n/n, at y — 0 is quite different from that of m = <» .* Figure 3 shows the thickness

melted; the asymptotic values here are a/n. —> y + 1 — 2/(ir 1/2mn.) for m > 0, and

y + 1 — 4y1/2/ir for m = 0.

•01 .02 .03 .04 .06 .08 .1 .2 .3 .4 .6 .6 1.0 2 3 4 6 8 10

Y=i-I
Lm

Fig. 3. Thickness melted, s.
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