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-NOTES-

A NOTE ON RIEMANN'S METHOD APPLIED TO THE DIFFUSION EQUATION*

By JOHN W. MILES (University of California at Los Angeles)

Summary. The method of Riemann (or Green) is applied to the integration of the

parabolic equation in m dimensions and two variables. The result is applied to the two

phase diffusion problem. The reduction to tractable equations is not simple, however,

and the results of the investigation appear to be essentially negative.

1. Introduction. The method of Riemann for integrating partial differential equa-

tions has received considerable attention in the case of the hyperbolic equation176,

where it has proved to be a most elegant approach. Its application to equations of

the parabolic type has, on the other hand, received considerably less attention.**

Pascal7 has considered the special case of fixed boundaries (in space), while Rade-

macher and Rothe8 have considered the more general one-dimensional case where the

dependent variable is specified over an arbitrary boundary but did not apply it to the

solution of particular problems. The following note will be restricted to the case of

two independent variables, but not necessarily to one dimension. The extension to an

arbitrary number of independent variables may be made along the lines indicated by

Webster.9

2. Riemann integration. The equation to be integrated is

L{U) = d~x I/*" d~xu(x> l)] ~ ^ ftu(x' l) = ~Q(X> l)- ' (1)

If (1) is regarded as the equation of heat conduction, then u(x, t) is the temperature,

a: is a space coordinate, t is the time coordinate, k is the diffusion constant, and Q is

the source strength. The space is m dimensional, and corresponds to one dimension,

*Received May 17, 1948.
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that the method under discussion is designated as Green's method therein. It is the author's impression
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'Pascal, loc. cit., p. 1178.

8Frank and v. Mises, loc. cit., chapter by H. Rademacher and E. Rothe, p. 646 ff.

9Webster, loc. cit., p. 257 ff.
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two dimensions with axial symmetry, or three dimensions with spherical symmetry for

m = 1, 2, or 3, respectively.

The operator which is adjoint to L is defined by

If the combination vL{u) — uM(v) is integrated over a surface S in the (£, r) plane,

which is bounded by the curve C, it can be shown that10

JJ \vL(u) — uM(v)] d£ dr = tj) jj^w — v cos (n, £) + kuv cos (n, dl (3)

S C

where (f, r) are running (x, t) coordinates, and cos (n, J) and cos (n, r) are the direction

cosines of the inwardly directed normal to C with respect to the £ and t axes.

Fig. 1. Curve in (J, r) plane for integration of Eq. (3).

The identity (3) will now be applied to a curve consisting of two segments Ci and

C2 , as shown in Fig. 1. Cx is a portion of the line t = t, and C2 is a curve for which

r < t, but is otherwise arbitrary. Moreover, it will be assumed that

Mm, r)] = 0, (4)

Kf'V*, t) = 8(x - a (5)

where

5(x — £) = 0, x 7^ ij (6a)

f*x+ e

/ 50 - £) di. = 1, « > 0 (6b)
'' x— «

10This follows directly from the more general result derived by Webster, loc. cit., p. 245.
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i.e., v(£, t) is a solution to the adjoint equation (4) which reduces (essentially) to the

Dirac delta function, as defined by (6), at r = t. Now along the curve Ci

dl cos (n, £) = 0, (7a)

dl cos (n, t) = — d%, (7b)

^ ~ ^ °0S ^n' ® C°S ^n' T^™_1 ^

= ~ j> t)5(x - Q d$,
(7c)

= —u(x, t).

Substituting L(u) = —Q from (1), M(v) = 0 from (4), and the line integral along C,

from (7c), (3) reduces to

u(x, t) = JJ Qft, t)v{x, t; r) d% dr

+ H[V%~udi\ dT+KUvd^

(8)

where the adjoint function v is now regarded as a function of both the parameters

(a;, i) and the running coordinates (£, r).

3. Comparison with the method of characteristics. The foregoing solution is a

degenerate case of the method of characteristics, as applied, e.g., by Volterra to the

wave equation.11 The two characteristic lines utilized in the solution of the hyperbolic

equation in two coordinates merge into a single characteristic for the parabolic equa-

tion. Moreover, in applying the method of characteristics to the hyperbolic equation,

the curve C2 is restricted to intersecting a given characteristic only once, whereas in

the present case the curve necessarily intersects the characteristic twice. It may also

be remarked that the adjoint functions appropriate to the hyperbolic equation are

generally singular along the entire characteristics through the point at which the solu-

tion is desired, whereas in the parabolic equation the adjoint function is singular only

at that point.

The latter property is perhaps more closely related to the solution of the elliptic

equation, where the adjoint function is singular at a point, although this point is then

located within C, rather than on its boundary.

4. Boundary conditions. It will be assumed that the boundary condition is of the

open Dirichlet-Neumann (mixed) type, viz.

u(£, t) + Pit, r) ~ w(£, r) = £m_1/(£, t), (I, r) on C2 . (9)

"Webster, loc. cit., p. 266 ff.
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If ;8 = 0 the boundary condition is simply of the open Dirichlet type, whereas if /3 = co

(with / replaced by /3_1/)> it is of the open Neumann type. (The adjective "open"

implies that boundary conditions are not applied over a closed curve in the £, r plane,

i.e., the curve is open in the direction of positive time.) Substituting the condition (9)

in Eq. (8) to eliminate (du/dg), it is found that the explicit presence of u in the inte-

grand may be eliminated by requiring the adjoint function to satisfy the boundary

condition.

kv(x, t; £, r) cos (n, r) + v(x, t; £, t) + /3_1({, t>(£, t) cos (n, £) = 0,
ldi J (10)

(£, r) on C2

whence Eq. (8) reduces to the alternative forms

u(x, t) = JJ QQ, t)v(x, t; £, r) d£ dr + J> p~\£, r)/(£, t)v{x, t; £, r) dr, (11a)

= JJ Q(£, r)v(x, t; f, t) df dr

(lib)

+ J1 /(£> T-)^(z, t) - ^v(x, t; t) drj.

(7 a

The result (11) replaces the problem of solving Eq. (1), subject to the inhomogeneous

boundary condition (9), with the problem of solving the adjoint equation (4), subject

to the homogeneous boundary condition (10) and the singular condition (5). It re-

mains to show that the latter solution exists and is unique. The proof is evidently the

same as that for Eq. (1), if the sign of t is changed, and it follows that a necessary

condition is that the boundary condition on v be open in the negative r direction (note

that (5) closes the boundary condition in the positive t direction). Now, since cos (n, r)

and cos (n, £) cannot vanish simultaneously, the only conditions for which Eq. (10) is

indeterminate are

cos {n, £) = 0 |

/3(S, r) = 0,

ft, r) on C2 . (12)

Hence, for the smallest value of r (the initial time) on C2 , assuming the curve to be

continuous so that cos (n, £) = 0 at the minimum, /3 must vanish, and it is therefore

necessary, cf. Eq. (9), that u be explicitly stated there. The physical implication is that

the phenomenon described must have an initially prescribed state.

5. Reduction for fixed boundaries. Perhaps the simplest contour C2 consists of two

lines of constant £ plus a line of constant r{<t). For convenience, the last line may be

taken as r = 0 with no loss of generality. The first two lines will be chosen as £ = xx

and £ = x2 , as shown in Fig. 2. (Choosing the line £ = 0, would be a rather special case

for m > 1.)
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The boundary conditions (9) and (12) reduce to

£ = Xi :u(Xi , t) + 13i |- u(x{ , r) = x)~mf{(T), i = 1, 2 (13)
ok

r = 0 : u({, 0) = Mo(?) (14)

while Eq. (10) reduces to

v(x, t; Xi , t) + /3i tt v(:c> 2; a:,- , t) = 0, i = 1, 2 (15)
of

and Eq. (lib) becomes

w(a;, t) = I dr [ Q(£, t>(x, i; £, r)
«^0 •'ii

+ « [" u0(SM*, C 0)r_1
/ 1

+ Jo f i(r) ^ Zi , r) dr

pt Q
- /2(r) — t>(a;, i; z2 , r) dr

(16)

C=X, U=Uo
Fig. 2. Curve in (if, t) plane for fixed boundaries.

The result (16) is generally deduced directly from Green's theorem, rather than the

more general identity of Eq. (3).

6. Application to two phase problems. As an example of a more general type of

problem to which the result (11) could be applied, the freezing or melting of a solid
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will be considered. It will be assumed that the substance undergoing such a change of

state is located between two fixed boundaries £ = xx, x2. Between these two boundaries

lies a moving boundary, designated x,2(j), as shown in Fig. 3. The temperature on

the two sides of this boundary will be designated as ux and u2 .

£=x, u=u0 4=x2
Fig. 3. Curve in (£, t) plane for two phase problems.

At the boundaries £ = xx , £ = x2 , and r = 0 the boundary conditions (13) and

(14) are appropriate, while the boundary conditions at x12 may be written

Wife , t) = u2(xi2 ,0=0, (17)

[*. £ ux(xl2 ,t)-k2~ u2(x12 , f)] = Xp (18)

where (17) states that the boundary is one at which freezing occurs, and (18) follows

from a heat balance of a small element including a section of the boundary, k being

the conductivity, p the density, and X the latent heat. The result (8) may be applied

separately to the regions to the right and left of the boundary x12, where

dlla = =F<2t sec (n, iju). (19)

The adjoint functions in the two regions satisfy Eq. (5) at t — t, Eq. (14) at £ = Xi

and £ = x2, and

Vi(x, t; x12 , t) = v2(x, t; xl2 , r) = 0 (20)

Substituting the conditions (13)-(15), (17), and (20) in Eq. (lib) and assuming

Q = 0, the temperatures are found to be

u^x, t) = Ki J u0(£K(z, i;£, Of"1 d% + J^ /i(r) —Viix, t; xx , r) dr, (21a)

u2(x, t) = k2 [ u0(g)v2(x, t; £, 0)r_1 - f f2(r) ^ v2(x, t; x2 , r) dr. (21b)
(o) *>o
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The determining equation for xl2 is now obtained by substituting Eqs. (21) in Eq. (18)

with the result

l»x ia(0) «\ /*Xa *\

kiKi / ^o(£) ~r~Vi(x\2 j t) £, 0){ d£ k2K2 / uo(£) jr~ ^2(^12 > t) £> 0)£ d%
JXl OX JXlt (0) C7X

/» f ^2 /»* ^2

+ ki J^ /i(t) ^1(2:12 , i; £1 , r) dr + k2 J /2(t) > *'> x* > T) (22)

= XP|x12«).

The solution of Eq. (22) for x12(<) will evidently be quite complex in practical appli-

cations; moreover, the function vx and v2 must be determined first.* For m = 1, x2 = 00,

and u(xi) = const., a solution can be given and was first obtained by Riemann,12 using

similarity solutions to the original partial differential equation (1). The physical problem

investigated by Riemann was the freezing of a deep lake for constant surface tempera-

ture, and his approach yields the desired results with considerably less trouble than

the solution of Eqs. (21), (22).

The problem of the growth of ice on cylindrical cables or spherical shells and the

freezing of flat, cylindrical, or spherical ingots are all problems of great practical im-

portance which fall in the category under consideration. Only the first of these problems

has (to the author's knowledge) been treated analytically, and then only quite ap-

proximately.13 The author has attempted to solve such problems through the formula-

tion of Eqs. (21) and (22) but was unable to obtain anything approaching an analytical

solution in closed form, except for the simple problem of freezing a slab with a (required)

constant temperature gradient at the interface of freezing.

Perhaps the most expedient approximate approach is to assume an equation, say

xll'it), for the propagation of the interface, introduce it in Eqs. (21) and solve for u[v

and w'1', substitute these in Eq. (18) to obtain the next approximation solve

for w{2) and u22), etc. While the convergence of this process would appear to be quite

rapid, the evaluation of the integrals in Eqs. (21) remains difficult (even when i\ and

v2 are readily determinable), and it will generally be necessary to have recourse to

numerical or graphical techniques.

7. Conclusion. While the method of Riemann brings about a rather general solution

to the parabolic equation, it does not appear to present an immediately practical method

of solving problems which are more complex than those which are readily treated by

more standard methods. The general solution presented herein may nevertheless prove

useful in leading to various approximate solutions, or it may be that the equations such

as those presented herein may actually be solved analytically or on automatic com-

puting machines.

*In general, they will be analogous to the Green's functions for fixed boundaries.

12Frank and v. Mises, loc. cit, vol. 2, chapter by Riemann, 220-222.

13C. L. Perkins and L. B. Slichter, Problem of ice formation, J. Appl. Phys. 10, 135 (1939).


