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hypothesis, | £ | = 1, of the inequalities (8) is satisfied by the vector £ = e(<), it now

follows from (8) that

\(t) < d log r(t)/dt < nit). (9)

Finally, if t° < u < v, integration of (9) between t = u and t = v gives

f \(t) dt < log r(v) — log r(u) < f n(t) dt.
V U Ju

On the other hand, the convergence of the improper integrals (6) means that

f \(t) dt —>► 0 and f ii(t) dt —> 0 if u —, v —.
J u Ju

But the last two formula lines imply that log r(v) — log r(u) ->0as«->®,i)->o>.

This means that the logarithm of r(t) tends to a finite limit as t —>°o. Since this is equva-

lent to the statement that r(t) itself tends to a finite non-vanishing limit, the proof is

complete.

A GENERALIZATION OF ALFREY'S THEOREM FOR VISCO-ELASTIC MEDIA*
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1. Introduction. For the non-homogeneous stresses in isotropic incompressible visco-

elastic media characterized by linear relations between the components of stress, strain

and their derivatives with respect to time, T. Alfrey has shown (Ref. 1) that in the

case of the first boundary value problem, the stress distribution is identical with that

in an incompressible elastic material under the same instantaneous surface forces. A

similar result was obtained for the second boundary value problem where the displace-

ments at the boundary are specified. It is the purpose of the present note to generalize

this theorem to isotropic compressible media for problems involving body forces. Only

the first boundary value problem will be discussed, as the corresponding theorem on the

second boundary value problem is self-evident.

2. First boundary value problem. Let the displacements along the x, y, z directions

be u, v, w. Then the typical expressions** of the six strain components can be written as:

du
€x ~ dx'

_du dv
7xv ~ dy + dx ■

(1)

If the six stress components are denoted by <jx , uv , <rz , txv , r„2 , t„ , the components

*Received Sept. 7, 1949.

"""Throughout this note, only typical expressions are explicitly given; other expressions can be readily

obtained by cyclic permutations.
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of body force by X, Y, Z, and the surface force per unit area by X, Y, Z, the equations

of equilibrium are

+ ^ + ^r + x = o (2)
dx dy dz

Here the body forces X, Y, Z are the result of external field or agent and will not be

identified with the inertia forces of the material. The inertia forces are here considered

to be negligible as is actually the case for a wide class of problems. If I, m, n are the

direction cosines of the normal to the surface, then the surface conditions are:

X = lax + mrxy + m,x (3)

To determine the stress distribution completely, there are in addition six equations

of compatibility:

d\ , _ d27x„ _ d2ex _ d_ (_ dyut dytx , .

dy2 dx2 dx dy ' dy dz dx V dx dy dz /

It remains to specify the relations between the components of stress, strain and

their time derivatives. These relations will be assumed to be linear, corresponding to

problems of small strain. If in addition the material is assumed to be isotropic, then

purely on the ground of invariance under space coordinate transformation it can be

shown that the required relations have to be of the following form:

Pc* = Q(Ae + 2mO

P= Qm7« ,
(5)

where n and X are constants, and

6 — ex + e„ + e, (6)

The operators P and Q are time operators defined as:

«ym — 1

P = ■ 4" cim-1 r "l- * ■ ■ "t" ao
dtm dtm_1

Q ~b + b-1 ̂  + " ■+ bo

(7)

The a's and b's define the characteristics of the material. They could be functions of

time, but not functions of the space variables. Thus a material with changing properties,

caused by the drift towards thermodynamic and chemical equilibrium, can be also

represented by these operators.

By eliminating the strains between the compatibility equations (4) and the stress-

strain relations (5), one has:

pl"+ iHnr (iF + iF + ¥) +2L 3X + 2/jl ox A + 2n \dx dy dz / ox
]-o

„2 2X + 2M d2e (dX dF\l _

V + 3xT^ tedy + \df + dx ) J " °

(8)
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where

0 = <rx + <rv + <JZ (9)

The equations (8) are sufficient to solve the first boundary value problem: The surface

forces X, Y, Z and body forces X, Y, Z are specified for all values of t. For any given t,

these forces must be in equilibrium. The problem is to determine the distribution of

stresses fulfilling these boundary conditions.

Now let

X = X*g(t), Y = Y*g(t), Z = Z*g(t) (10)

The starred quantities are functions of space coordinates only. Then for equilibrium the

body force must vary with time in a similar way. Thus:

X = X*g(t), Y = Y*g(t), Z = Z*g(t) (11)

The stress components can now be written in the same manner:

<7, = a*g{t), txv = T*vg(t), (12)

By substituting equations (11) and (12) into equations (8), it is easily shown that the

starred quantities satisfy the stress equations for a purely elastic medium with Lamp's

constants X and n. By substituting equations (10) and (12) into the boundary conditions

(3), it is seen that the starred quantities also satisfy their corresponding boundary

conditions. Therefore, in the case of the first boundary value problem, the stress dis-

tribution is identical with that in purely elastic material under the same instantaneous

surface forces and body forces.

To determine the displacements u, v and w, one introduces the unknown time function

h{t) such that:

u = u*h(t), v = v*h(t), w = w*h(t) (13)

where the starred quantities are again functions of space variables only. When equations

(13) are substituted into equations (5), u*, v\ w^_are_found to be the displacements of

a purely elastic medium under the loading X*, Y*, Z* and X*, Y*, Z*. Furthermore,

h{t) is determined by:

Qh(t) = Pg(t) (14)

with the initial condition that at t = 0, h and its first (n — 1) derivatives vanish. The

function h(t) is thus universal in the sense that it depends only on g(t) and the properties

of the material. The other characteristics of the problem do not enter into its determina-

tion. In particular, the function h(t) may be directly determined experimentally on a

pure tension bar with the tension varied with time according to g(t).

By superimposing solutions, the time dependence of the applied forces can be gen-

eralized as shown by Alfrey (Ref. 1).

JT. Alfrey: Non-homogeneous stresses in visco-elastic media, Q. Appl. Math. 2, 113-119 (1944).


