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NOTE ON THE KINEMATICS OF PLANE VISCOUS MOTION*

By J. L. SYNGE (Dublin Institute for Advanced Studies)

In 1911 G. Hamel (Gottinger Nachrichten, Math.-Phys. Kl. 1911, 261-270) obtained
an interesting result, which may be stated as follows:

Let R be a finite plane region with boundary B. Then the equation Aip = F possesses a

solution for which both and dip/dn vanish on B if and only if F satisfies

/
FU dx dy = 0, (1)

U being an arbitrary harmonic function.

In other words, for the existence of a solution with this double boundary condition,

it is necessary and sufficient that the function F be orthogonal to the linear space of har-

monic functions.

The hydrodynamical interpretation of Hamel's theorem is as follows. For an incom-

pressible fluid moving in the plane with vorticity co, we have

ux + vy = 0, vx — uv = 2co, (2)

and there is a stream-function \p such that

u = —\py , v = \px , A\p = 2w. (3)

Thus Hamel's theorem tells us that in order that a given distribution of vorticity may be

consistent with vanishing velocity on the boundary B (the usual boundary condition

for a viscous fluid in a fixed container), it is necessary and sufficient that

/
oiU dx dy = 0, (4)

U being an arbitrary harmonic function.

However, inspection of Hamel's proof (loc. cit. p. 266) shows that he made use of a

Green's function of the second type, i.e. a harmonic function (?2 with a singularity log r

and making dG2/dn = 0 on B. There is, of course, no such function for Laplace's equation,

since this singularity and this boundary condition are inconsistent.

Not knowing of Hamel's work, I obtained Hamel's result in 1935 in a rather special

case (Proc. London Math. Soc. 40 (1935), 23-36) in a different way.** In the present note

the theorem is extended to include compressibility.

Theorem: A compressible viscous fluid moves inside a fixed connected boundary B, on

which the velocity vanishes. An expansion d(x,y) and a vorticity w(x,y) are consistent

with this boundary condition if, and only if,

I (2coU - OV) dx dy = 0, (5)

*Received November 16, 1949.

**Footnote added in proof (Feb. 20, 1950): The result (4) has recently been proved by J. Kampe de

Feriet (Math. Mag. 21, 71-79(1947): Ann. Soc. Sci. Bruxelles (I) 62, 11-18(1948).
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where U is an arbitrary harmonic function and V the conjugate harmonic function, such

that

Ux = Vv, Uv=-Vx. (6)

In purely mathematical language, equation (5) is a necessary and sufficient condition

for the consistency of the equations

ux + vy = 6, vx — uy = 2co, (u)B = 0, (v)b = 0. (7)

Proof: Let I, m be the direction cosines of the outward normal to B. Let 6 and co be arbi-

trarily assigned. Let u', v' satisfy

ux + v'y = 6, v'x — Uy = 2o>, (lu' + mv')B = 0. (8)

It is well known that the solution («', v') is unique, since the two partial differential

equations define (uv') to within the gradient of a harmonic function, and the normal

derivative of the latter on B is then given by the last of (8).

Denoting the integral in (5) by I, we have

/ - f (2coU - ev) dx dy

= / [U(v'x - u'y) - V(u'x + v'y)} dx dy

O)

= / [u'(Uy + Vx) + v'{Vv - Ux)] dx dy

+ [ [U(lv' - mu') - V(lu' + mv')] ds
J B

or, by (6) and (8),

1=1 U(lv' - mu') ds. (10)
J B

Now if I = 0 for arbitrary harmonic U, it follows that

(Iv' — mu')B = 0, (11)

since the values of U on B may be arbitrarily assigned. Combining (8) with (II) we get

(ur) B = 0, (v')B = 0; thus the condition I = 0 is sufficient.

On the other hand, if (7) are consistent, then (u')B = 0, (v')B — 0, and so, by (10),

7 = 0; thus the condition I = 0 is necessary.

We get Hamel's theorem on putting 0 = 0.


