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1. Introduction. It has been known for a long time that the lubrication of solid

surfaces by fluids is primarily an effect of their viscosity. Today, however, there is a

widespread belief that there are other, as yet unknown, properties of liquids entering

into the picture, particularly at high pressures. An investigation of such effects is severely

hampered by the fact that there are few experimental results that can be checked against

theory. This is due partly to the difficulties of making precise experimental measure-

ments, and partly to the insufficient development of the conventional theory.

This paper applies conventional theory to a few situations of experimental interest.

In Sec. 2, a comparison is made between the Reynolds equation and the more accurate

Stokes equations. Section 3 studies the cylindrical bearing without assuming film

lubrication, while Sec. 4 studies the spherical bearing as a sample of a case with side

leakage.

2. The equations of Reynolds and Stokes. A good starting point for the study of

lubrication are the Stokes equations of hydrodynamics,1

Vp = vV\ (1)

V-v = 0, (2)

with their immediate consequence

V2p = 0. (3)

The relations (1) to (3) are already a special case of the general hydrodynamic

theory. They assume: (a) that the inertia of the liquid can be neglected; (b) that the

liquid is incompressible; and (c) that the viscosity ri is a constant independent of applied

stresses.

Assumption (a) is probably justified if the equations are used primarily for the study

of stresses, for one can easily verify that the pressures obtained from Bernoulli's theorem

are of an order of magnitude smaller than the pressures significant in lubrication theory.

This still leaves the possibility that the flow pattern in regions of low stress may come

out wrong because of this neglect. Assumption (b), on the other hand, is very serious

indeed. The Eqs. (1) and (2) always lead to negative pressures that may equal thousands

of atmospheres. We know with a high degree of certainty that such pressures cannot

*Received Feb. 24, 1949.
**Now at Bell Telephone Laboratories, Murray Hill, N. J.

'Lamb, Hydrodynamics, Cambridge University Press, 1932, p. 595.
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exist in an actual lubricant.2 The most plausible way by which the fluid presumably

escapes these pressures is cavitation. But a coherent hydrodynamical method which

takes account of cavitation is not available at this time. We are limited, therefore, to

qualitative guesses concerning such a development. Assumption (c) is also incorrect

since it has been shown that viscosity is dependent on pressure and shearing rate. It

seems reasonable at this time, however, to expect no qualitative change from a more

refined treatment of viscosity.

Almost all the calculations on lubrication found in the literature proceed not from

the equations of Stokes given above, but from a two-dimensional equation of Reynolds.3

Reynolds' treatment is known to be more approximate than the treatment of Stokes

and to be applicable mainly to thin lubricating films; but beyond this, their mutual

relation is not well understood.

In order to clear up this point we shall consider the following specialized situation.

Suppose we have a thin layer of liquid which is bounded on one side by an ideal sta-

Fig. 1. A sample case for examining the Reynolds equation.

tionary plane, which we take as the xy-plane (Fig. 1), and on the other side by an arbi-

trary surface

z = h(x, y). (4)

Let this surface be moving with a velocity whose components are U, V, W which are

functions of x and y.

2Swift, Proe. Inst. Civ. Eng. 233, 267 (1932); Scott, Shoemaker, Tanner & Wendel, J. Chem. Phys.

16, 495 (1948); Briggs, Johnson, & Mason, J. Acoust. Soc. Amer. 19, 664 (1947); Fisher, J. Appl. Phys.
19, 1062 (1948).

30. Reynolds, Phil. Trans. Roy. Soc. 177, 157 (1886).
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We now introduce power series developments. For the pressure p we set

- p(x, y, z) = £ y)z", (5a)
V v-0

and for the components u, v, w within the liquid

u(x, y, z) = Yj Ux, yV, (5b)
j» = 0

v(x, y, z) = X) V,(x, y)zv, (5c)

w{x, y, z) = X) 2/K- (5d)
f = 0

Equations (1), (2) and (3) then become

3? = I? + V + (" + 2)(" + 1}^+2 ' (6a)

* -iS +17 + <' + ^ > (0b)

(? + l)x„ + i = + (v + 2((v + l)f„ + 2 , (6c)

<" + «»■ +1 +fr"0> (6d)

+ (f + 2)(y + l)x,+2 = 0. (6e)

The boundary conditions are

£o == Vo = fo = 0? (7 &)

X) £„(z, y)h'(x, y) = U(x, y), ^

X vXx, V)h\x, y) = V(x, y), (7c)
v~l

2 y)h'(.x, y) = W(x, y). (7d)
v = l

In reducing the system (6) we observe that the quantities can be eliminated and

that Eq. (6c) is redundant, except when v — 0. This leaves the reduced system



4 GREGORY H. WANNIER [Vol. VIII, No. 1

^ = §dt2 + W + {v + 2)(" + 1)?"+2 ' (8a)

* = ^ ^ ' <8b>

-^§ + + (v + 2)(e + l)ir,+2 = 0, (8c)

d£i dvi
Tl = ~ to ~ ^ ' (9)

with the reduced boundary conditions

X) £»(«» yW(x, y) = C/"(x, 2/), (10a)

2 v,(x, y)h'(x, y) = 7(x, ?/), (10b)
y-1

§H%!+^i}vfe»)--iri*',')- (ioc)

We can look at these equations in the following way: the Eqs. (8) determine all the

£, j/ and ir of index larger than one in terms of x0 , xi , £i , i?i . These four quantities

are determined by the remaining four equations. An actual procedure of this type is

generally difficult because (10) involves not only these four variables, but all higher

index variables as well.

This is the point where the thin film assumption enters. The Eqs. (8) give us in-

equalities of the type

h2
~v+2 Z,* + 2 ,l T. v // 7 9 V

xv+2z Tv+2h ~ x„ -p h <3C x„/i ~ x„z

provided

?«,

Here h is the thickness and I the length of the liquid film. This means that in each

parity, higher powers in the series (5) are small compared with lower powers, and we

can get a first approximation to a solution by retaining the first term of each parity in

(10). This leads to the simplified boundary conditions

£i h + I2/12 = U, (Ha)

7?i h + ti2h2 = V, (lib)

Hi+tWHi+g8}'*--"'- (ii°>
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They have to be combined with the first of the Eqs. (8a) and (8b):

Ix = 2*2 ' (Ud)

= 2* * (lle>

We thus have the five equations (11) in the five unknowns £i , |2 , Vi > V2 , To • If

we eliminate the first four unknowns from the set, we get

I !± + A (h*?E°)\ = 2w - u — - V— + hi— 4- —)
6 \dx \ dx J + dy V dy )\ dx dy + \dx + dy /'

The left-hand side is already Reynolds' equation. For the right-hand side we can dis-

tinguish essentially two cases.

(a) We may have a stationary curved surface rotating against our fixed plane

(Fig. 2).

HIGH ^^</////////L0W
PRESSURE PRESSURE

Fig. 2. Situation for the normal Reynolds equation.

LOW X/ / HIGH
PRESSURE / PRESSURE

Fig. 3. Situation for the reversed Reynolds equation.

(b) We may have a bump in the moving surface moving parallel to the plane (Fig. 3).

In the first case we have that

w-uf+vf,dx dy

and the last two terms are smaller by a factor h/a, where a is the radius of rotation.
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In the second case W and the last two terms vanish. Thus we observe that we get the

Reynolds equation either way, but in the second case the sign, and hence the location

of the pressure maximum and minimum, are reversed, as compared with the usual case.

In an actual arrangement h is likely to vary for either reason. We can then make the

definitions:

h„ = a geometric h defined for an ideally smooth surface; (12a)

hr = the remainder of h due to roughness. (12b)

We can distinguish h„ and hr by the fact that the velocity of the moving wall is by

definition parallel to its geometric surface, so that h„ is stationary, hr is variable.

From these considerations, we deduce the final equation:

■ <13>

This is Reynolds' equation if hr = 0. In addition to deriving this equation we have

obtained a complete description of the flow and pressure pattern through (11) and (9)

and the recurrence relations (8) for higher terms. This refinement can be applied, for

instance, to the Sommerfeld solution for the cylindrical bearing or to the results of

this paper on the spherical bearing.4 The result is that the approximation proceeds in

powers of h/a, where h is the clearance and a the radius, and that there are always

pairs of contributions, such as and f2, which are of equal order.

It is clear that the restrictive assumptions made in deriving (13) are unsatisfactory.

If one investigates curved oil films, one gets the obvious generalizations of (11) and (13):

V = JJ,h + U X, (14a)

- Vt0 = 2U2 , (14b)
V

|v.(^vTo) = v.V(Af - hr), (15)

where all vector quantities are understood to be tangential to the liquid film. The

attempt to remove the restriction illustrated in Fig. 1, however, was not successful.

But it stands to reason that (14) and (15) should be derivable even if both surfaces

have irregular shape and proper velocities. The work of later sections and general

plausibility arguments indicate that the proper generalization of (15) is

i V.(ft»VXn) = (V, + V2)-^K -
Vi - v2

V i + V2
VK>. (16)

We have thus been able to show, at least for a special situation, that the Reynolds

equation arises from the Stokes equations in first approximation if all quantities en-

tering the Stokes equations are expanded in powers of the film thickness. In addition,

we have obtained simple formulas which give such unknowns as the transverse pressure

gradient from the Reynolds solution.4 The standard assumption that the latter is zero

is, therefore, superfluous.

4See Eqs. (40) and (59).
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3. The cylindrical bearing. It has been pointed out by Duffing and by Reissner5

that the equations of Stokes can be solved rigorously for the infinite cylindrical bearing.

The derivation to follow will proceed to the end, giving explicit expressions for the

resultant forces and torques. Several limiting cases will be presented, one of which is

the classical Sommerfeld solution.6

The infinite cylindrical bearing has flow in two dimensions only (no side leakage).

The Stokes equations (1) and (2) reduce, for such a case, to

dp fd2u d2u\ /17x
Tx = "Ito" + W- <17a)

iMS+$). (i7b>

<i8>

for the interspace between two circles of radius ax and a2 . The circles are placed ec-

centrically by an amount e (Fig. 4). At each boundary the normal velocity must vanish

and the tangential velocity must equal a specified constant amount vx and v2, respectively.

The equations are solved most conveniently by first solving (18) identically through

the introduction of a stream function SIr:

u = - — , (19a)

• -1 • <19b)

Then if we substitute (19) into (17), we find that we have to solve the equation

V2V2* = 0 (20)

and that p will be obtained from V2^ by the method of conjugate functions:

V2* + i-p = f(x + iy). (21)
v

The conditions under which Eq. (20) must be solved are that: (a) SI> must be a con-

stant on each of the two bounding circles; (b) the normal gradient of ^ on each specified

circle must equal a specified constant, vx or v2 ; (c) the conjugate function of V2^ must

be single-valued over the entire domain.

Conditions (a) and (b) are somewhat weaker than the standard boundary conditions

for (20).7 Condition (c) which replaced the missing boundary conditions might be

expected to be awkward. Actually, it gives no trouble in the following applications.

6G. Duffing, Z. angew Math. Mech. 4, 296 (1924); H. Reissner, Z. angew Math. Mech. 15, 81 (1935).
®A. Sommerfeld, Z. Math. Phys. 50, 97 (1904).
'See Frank-v. Mises., Differentialgleichungen der Physik, vol. I, pp. 845-862.
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The solution of (20) may be constructed with the help of a general theorem7 which

states that any solution of (20) can be written in either of the following two forms:

¥ = ySj + <i>2 , (22a)

or

¥ = (x2 + 2/2)$i + $2 , (22b)

Fig. 4. Basic data for the cylindrical bearing.

where

V2^ = V2$2 = 0 (22c)

and x and y are Cartesian coordinates. This theorem associates (20) very closely with

the Laplace equation

V2<*> = 0.

The electrostatic solution for the geometry of Fig. 4 is well-known. In order to express
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it simply we pick a coordinate system as shown in Fig. 5. The y-axis is laid through the

centers Ci and C2 of the two circles to an external origin 0. The distances OCi and OC2

will be denoted, respectively, by <1, and d2 . The origin is located in such a way that

d\ - a\ = d\- al = s2. (23)

Equation (23) and the definition

d2 — di = e (24)

give us di , d2 , s in terms of the original quantities ax , a2 , e of Fig. 4. We find that

dl = ke ̂  ~ e' (-25a')

d*= h + 16' ^25b^

s2 = ~^2 (o2 — at — e)(a2 — ai + e)(a2 + ax + e)(a2 + cti — e). (26)

The points A and B on the y-axis, whose distance from 0 is s, serve as origins for

the logarithmic potential which is adapted to the present geometry:

$ = C log == • (27a)
AP

The curves on which $ is constant are circles, two of which are the bounding circles

discussed above. If we introduce the variable parameter a for the radius of such a circle

and 8 for the distance of its center from the origin, we then get the generalization of (23),

t>2 - a2 = s2, (28)

and

4 - I C log ■ (27b)

This solution $ and its derivatives can be used in conjunction with the theorem (22)

to produce a large number of solutions of (20). The successful combination is found to

have the form

x2 + (s + y)2 y(s + y) f, y(s - y)

x2 + (s- y)2 + a x2 + (s + y)2 + ° z2 + (s - y)2

+ Dy + E{x2 + y2 + s2) + Fy log ,

or, more briefly, in a (5, y) coordinate system,

5 + s1T,s + v , s — y . „
log J^Ts + B2(S + s) + C 2(5 -s) + Dy

+ E-28y + Fy log 5 + S •
o — s

(29a)

(29b)
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Here A, B, C, D, E, F are constants to be determined. The structure of the solution is

clear from (29b); we have picked all solutions of (20) which are linear in y on either

limit circle. One solution of this form was not admitted, however, namely

V + rf + fi W k«

->■ X

B

Fig. 5. Geometric parameters for the eccentric bearing.

One verifies easily that a term of this type gives rise to a pressure term which is not

single-valued. It must, therefore, be rejected according to condition (c).
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The six constants A, B, C, D, E, F are determined by the boundary conditions (a)

and (b). Since SP is linear in y on either limit circle, we get from (a) two conditions,

annulling the linear part on either circle. Now d^/dn is found to be linear in 1 /y; this

gives rise to four more conditions, two of them setting the coefficient of 1 /y equal to

zero and two prescribing the value of the constant. Thus we end up with the following

six equations:

ld^B-l^c + D + ™-E+l°*'t^F = 0' (30a)

IsTT-sB-ld^-sc + D + 2d-E + h*'t^,F = 0' (30b>

2A + ldtriB + 12dt^ic (30c)

2A + lt^iB + lt^ic (30d)

-W + W (30e)

I - \ C - 2a*E + 2sF = ~a*v* • (30f)
A &2 ~T~ S ^ ^2 S

These equations yield:

A - - \ (dA - s2)

 2 (d\ — d2l)(a1vl +  

(al + a?)[(<4 + a?) log {(d, + s)(d2 - «)/& - s)(d2 + «)} - 4se]

+
s(® i "1" 02) id'.

0-2 V2) \

- d,)/'

2s[(al - a\)/(al + a?)](fflit>i + «2«2)

(«! + a2) log {0! + s)(d2 - s)/(d, - s)(d2 + s)} - 4se

Cl\(l 2(^(l} V\ (12 2^2)

(a? + a\)e

(31a)

B = {di + s)(d2 + s){same curly bracket}, (31b)

C = (di — s)(d2 — s)jsame curly bracket}, (31c)

n _ di log {(d2 + s)/(d2 - s)} - d2 log {(dt + s)/{dl - s)\ .

(af + a22) log {(d, + s)(d2 - «)/(d, - s)(d2 + «)} - 4se + ^

(3 Id)
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p (1/2) log {(ch + s)(d2 - s)/(di - s)(d2 + + a^) ,01 „\

(a; + a2) log {(d, + s)(rf2 - «)/(d, - s)(d2 + s)} - 4se ' l J

et    e(«i»i "4~ ̂ 2^2) t

~ (a? + a2) log {(dt + s)(d2 - s)/(d, - s)(d2 + s)} - 4se

From the flow pattern, which is completely specified by (29) and (31), we can de-

termine the pressure by using (21). We find that

i „ _ r *0 + y) r x(s - y) „ 4ss
V — B 2/t I \ 2 ^ 2/ 5 \ 2 ^ „/s2 rt2\V y (5 + s) y (8 - s) y{8 - s)

Calculation of the forces requires, of course, the entire stress tensor. In our case, the

tensor has three components which are obtained as follows:

= -p - 2i?

tt„„ = — v + 2t)

d2*

dx dy '

d2<Sr

dx dy '

(d1-* a2*\

Tx" ~ V\dx2 dy2)'dy

The result is:

1   > j sx(28y - S2 - s2) _ x[2y2 + ($ - 3S)y - 2s 5]
T"X — 2/ j2 2\2 D 2/ 5 I \3

V y {5 - s) y (5 + s)

, x[2?/2 - (s + 3% + 2s 5] sx(23y - 332 + s2)
«\3 ^ „.2/S2 «2\2y {8 - s) y (8 - s)

1 . sx(2Sy - 82 - s2) x[2y2 + (3s - 8)y + 2s2]

A y*(f_sy + * y2(S + s)3

, x[2y2 - (3s + 8)y + 2s2] sx(28y - 82 - s2)
2/ * \3 "T~ ^ / t2 2\2

y (8 — s) y{8 — s )

1 _,A s\~2Sy2 + (352 + s2)y - 25s2]

y2(82 — s2)2

— 2y3 -f- 2(23 — s)y2 -|- (38s — 2s2 — 82)y -f- s2(3 — s)

y\8 + s)3

„ —2y3 -f- 2(25 -f- s)y2 — (33s + 2s2 -f- 82)y 4- s2(3 + s)

y(8 - s)3

s[-23?/2 + 432y - 3(52 + s2)]

y{82 - s2)2

(33a)

(33b)

(33 c)
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The main interest centers usually on those resultants of (33) which act on the pin

or bearing, when considered as rigid bodies. The equations for the components of force

acting upon a circle of parameter 5 are:

±Fx = Lj (tT„ ^ + 7Txu y—^) dl, ,

±F„ = lj> (jrty * + r„ dls •

We find for these expressions:

±FX = 8trVLF = W, (34a)

where F is given by (31f) and L is the length of the cylindrical bearing. Similarly,

Fv = 0. (34b)

This equation is due to the anti-symmetry of the pressure pattern about the line of

centers (cf. Fig. 10). This same symmetry precludes the transport of x momentum

into any of the circles, and thus makes the force independent of the parameter 8. The

sign depends, of course, on the side from which the force is acting.

Substituting (31f) into (34) we get explicitly that

w 8wi;£e(oit>i + a-P^i  , /oc\

(a\ + al) log {(rfj + s)(d2 — s)/(d1 - s)(d2 + s)} — 4se

The geometrical parameters entering into this equation are explained in Fig. 4, Fig. 5

and Eqs. (23) to (26).
The total torque depends on the choice of the fulcrum. Taking the fulcrum at the

center of the circle of parameter 5, we find that

. T t J // n x(S - y) x2 - (8 - y)2\ „
±i = La w s{txx — Wyy) ■—^2 + icXy ^2 j ah ,

or that

±r = 8tti,L(A + F8), (36a)

where A and F are constants given by (31a) and (31f). This reduces for the inner surface

to

T! = 8irr)L(A + Fdi) (36b)

and for the outer surface to

T2 = -8ttt,L(A + Fd2). (36c)

If torques are referred to the same fulcrum throughout, such as the origin, then a constant

torque

± T = 8in]LA

results. This constancy can again be checked from symmetry considerations.
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A convenient way of representing the resultant torque is by calculating the co-

efficient of friction /. The generally used definition is

= ' (37)

where T, is the torque referred to the center of either circle and a, is its radius. It should

be emphasized here that we get two coefficients of friction, one for the inner cylinder

and one for the outer cylinder. If we assume the outer surface stationary, we find for

the inner surface that

, _ a2(^A — s2)[(gi + al) log {(di + s)(d2 - s)/(d, - s)(d2 + s)} — 4se]

Jl 2alse\al + a2)

(38a)

(he
~r 2 . 2

OL\ + CL2

and for the outer surface that

_ a2(did2 — s2)[(a? + a') log {(rft + s)(d2 - s)/(d, — s)(d2 + s)} — 4sel

h 2 se\a\ + al)

(38b)
&2@

z I *
tti + 0>2

The / generally calculated in the literature is /i , although many experimental arrange-

ments actually measure the torque on the outer surface.

A good deal of insight into the nature of the solution can be gained by considering

limiting cases. We are starting off with the most important one.

(a) The Sommerfeld-Reynolds limit: e = d2 — dx —■► 0.

We expand our results in powers of e and retain only the first term. Let us define the

nominal clearance c as

at — ax — c (39)

and write further that

From (25)

and from (26)

at ~ a2 ~ a.

di ~ a2 ~ —
e

= - (c2 - e2)1
e

Then we find for the pressure from (32),

_ 6r?e(aii)i + <^2) (2c — e cos \p) sin \f/ . .

^ (2c2 + e2)(c — e cos \f)2 '

where yp is the azimuth measured along the oil film in a counter-clockwise direction,

starting from the point of minimum clearance.
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Equation (40) is obtainable directly from the Reynolds equation (11) and has been

so obtained by Sommerfeld.6

The same limiting process can be carried out on the resultant force and torque.

For the total force we get

_ l^TryLea(v1 + v2) , .

W ~ (2c2 + e)(c - e2)1/2 C J

with the usual ambiguity in the sign. For the torques we find that

_ 4tniLa2{v2(c2 - e2) - vx{c + 2e2)} .

11 " (2c2 + e2)(c2 - e2)1/2 ' [ )

m _ 4^yLa2{vi(c2 — e2) — v2(c + 2e2)} . .

12 ~ (2c2 + e2)(c2 - e2)1/2 ' { )

d 2= a2

Fig. 6. Limit of zero clearance.

The coefficients of friction reduce to

, 1 c2 + 2e2 ,

3 ea ' (43a)

f2 = lc—^r ■ ^
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The formulas for W, Tl and f, can be found in standard textbooks. The flow pattern

reduces in this limit to a superposition of viscous drag by the inner cylinder plus a

Poiseuille type flow from the high to the low pressure region. This latter flow is opposed

to the motion of the pin on the side of wide clearance.

(b) Limit of zero clearance: s —> 0.

This limit, shown in Fig. 6, has some interest. From the experimental side, we observe

Fig. 7. Streamlines for a journal bearing of diameter ratio 5:9. Case of no eccentricity.

that a loaded bearing usually comes very close to a situation where there is contact

along a line or in a point. Mathematically, the simplification obtained is considerable,

mainly because the basic solution (27) is now rational instead of logarithmic. In addi-

tion, the distinction between d{ and a,, 5 and a, or c and e disappears. As a consequence,

the entire system of equations (29) and (31) is now replaced by the short expression

^ \a,v1{a - a2) + a2v2(a — a,)}(a — aO(a - a2) (44)
a C
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and (32) is replaced by

p = - + - + (45)
c a y { \y a a2 aj ai a2J

This case is very favorable for a study of flow conditions. The infinities in the stresses,

on the other hand, give rise to an infinite force and infinite inner torque. The coefficient

of friction stays finite, however, and is

= a2 - al = c_ _ (46)

ai a.

Fig. 8. Streamlines for a journal bearing of diameter ratio 5:9. 50% eccentricity. R = points of flow-

reversal on stationary surface.

Another finite result for this limiting process is

T2 = 0. (47)

Neither (46) nor (47) has much practical significance, since each is obtained by a

cancellation of infinities.
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(c) Limit of concentric cylinders: dx ~ d2 —>°°; d2 — —> 0; cti , a2 finite.

This complicated passage to the limit gives well-known results. We find that

* = 1 a'iVl ~ afl r2 + a'a^a\Vl +2a^) log r> (48)
2i &2 di (X 2 CL\

Fig. 9. Streamlines for a journal bearing of diameter ratio 5:9. Full eccentricity (zero clearance).

where r is the conventional radius. The pressure and load are, of course, zero. There

remains a shearing stress in the r, \p direction which is

2richal(a71v1 + a2Jv2) 1

  ~? ' (49)

2irLl times this expression is the exerted torque.

(d) Limit of a plane and a cylinder: d2 , a2 —> °°; s, di , ax finite.

This interesting limiting case does not alter the nature of the solution obtained, but
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greatly simplifies all coefficients. We shall, therefore, keep Eq. (29) and replace (31).

Writing

di = d, al = a, = v, v3 = V,

we get

,  dV  1 dav ... .

log {d + s)/(d — s) 2s'

R = 2(d + s) V . (d + s)av

log (d + s)/(d - s) s
(50b)

g-l ~w?J (50C)log (d + s)/(rf — s) s y

D = —.V, (50d)

E = 0, (50 e)

F = log (d + «)/(d - s) ' (50f)

The solution decomposes into two parts. The F-part describes a situation where a

cylinder falls with velocity V near a vertical wall; the y-part applies when a stationary

cylinder rotates with speed v.

If we substitute the expressions (50) into (34a) and (36b) we observe that (a) a

cylinder falling in the neighborhood of a vertical wall experiences no torque from it,

and (b) a cylinder rotating in the neighborhood of a wall experiences no force from it.

In case (a) there is a retarding force equal to

W =  8irriLV  . /gjN

log (d + s)/(d - s)

In case (b) there is a frictional torque equal to

T = 4x,?Zy dav . (52)
s

As an illustration of the formulas obtained, numerical results are shown for a bearing

having a diameter ratio 5:9. Figures 7, 8 and 9 show the flow pattern for three different

eccentricities: Fig. 7 shows the concentric case (Eq. (48)), Fig. 8 a case of intermediate

eccentricity (Eqs. (29) and (31)), and Fig. 9 the case of zero clearance (Eq. (44)). The

salient feature of these pictures is the return flow going in a direction contrary to the

moving pin. In Fig. 9 the entire flow returns that way, whereas in Fig. 8 only a fraction

does. This flow is due, of course, to the pressure difference which forces liquid through

the wide section as well as through the narrow clearance. Even in the Reynolds limit

of film lubrication this type of flow persists.

Figure 10 shows the pressure distribution for the flow condition of Fig. 8. We can

verify on this graph that the pressure generally varies little in direct line from one surface

to the other. The Reynolds treatment neglects such variation altogether; this assumption
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is thus fairly well justified, even for a bearing of fairly wide clearance. The anti-sym-

metry of the pressure pattern is more doubtful since it is directly connected with the

assumption of incompressibility.

0 -2 -4

Fig. 10. Lines of constant pressure for the bearing of Fig. 8. Pressures are to an arbitrary scale and

contain an additive constant.

Finally, in Figs. 11 and 12, are shown load vs. eccentricity curves and friction vs.

load curves for this bearing (Eqs. (35) and (38)). In order to compare them with the

traditional Sommerfeld formulas, an intermediate "radius" of 7 is ascribed to the bearing,

and Sommerfeld's equations are applied. The differences are not very marked. The

graphs do emphasize, however, that there is a difference in the coefficient of friction

according to whether it is defined on the inner or outer circle.

4. The spherical bearing. When we pass from rotating cylinders to rotating spheres,

we pass essentially from a bearing with line contact to one with point contact. As a

consequence, we get "side leakage" of the liquid about the contact point. The pre-

sentation to follow gives a partial solution of the mathematical problem. The difficulties
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Fig. 11. Load versus eccentricity for a journal bearing of diameter ratio 5:9.

 Present calculation  Sommerfeld formula

In the figure: W = load, ij = viscosity, v = speed of rotation, L = length of

journal, e = eccentricity, c = nominal clearance.
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encountered are not surprising since the solution for cylinders is based so much on the

potential (27) for the same geometry.

In discussing such a bearing there are essentially two possibilities: either the axis

of rotation is parallel to the line of centers, or it is perpendicular. Bearings of the former

type have been constructed and examined recently by Shaw and Strang.8 While the

bearing apparently works very well, there is at present no complete understanding of

its operation. It is easy to show from Stokes' equations (Eqs. (1) and (2)) that if the

liquid motion is entirely azimuthal, the pressure in the crescent-shaped cavity is a con-

stant. Actually, there is a slight upward flow in the bearing which is force fed. It may be

3.0 / 3.0

2.0 f 2.0

1.0

Tf/v L

.10 .20
(--)

Fig. 12. Coefficient of friction versus load for a journal bearing of diameter ratio 5:9. The left graph

defines friction as usual on the inner circle; The right graph defines it on the outer circle.

 Present calculation  Sommerfeld formula

that here we have simply a tightly sealed-off pocket of liquid which is under the hydro-

static pressure introduced by force feeding the oil. This would make the bearing hydro-

static rather than hydrodynamic, except perhaps for a hydrodynamic effect which pre-

vents contact at the lateral rim.

The normal mode of loading a bearing is lateral. Let the z-axis be the line of centers,

and let the z-axis be parallel to the axis of rotation (Fig. 13). The angular velocity will

be denoted by co. The remainder of the nomenclature will be the same as in Fig. 5.

If we introduce a cylindrical coordinate system,

P2 = x2 + y\ (53)

tan <p = & , (54)

8M. C. Shaw and C. D. Strang, The hydrosphere, a new hydrodynamic bearing, J. Appl. Mech. IS,

137 (1948).
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then the fundamental equations (1) and (2) read,

1 dp _2 1 2 dv«,
n ^ Vp 2 Vp 2 n >

7] Op p p 0<p

1 dp _ 2 1 , 2 cfop

7]p 0<p p p 0(f

rj dz

dv„ 1 ,di>2 ,1
T"e + -fp + -T- + --y£ = 0,
op p dz p d<p

and the boundary conditions are,

Z

X

Fig. 13. Coordinate system for the spherical bearing.

on the stationary sphere: p + z2 — 2d2z + s2 = 0,

vP = 0,

vv = 0,

v, = 0;

on the moving sphere: p2 + z2 — 2dxz + s2 = 0,

v, = -co(z — rfi) sin ip,

Vr = Co(z — rfO COS

y, = cop sin <p.
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The form of the equations and boundary conditions is such that the dependence on

V can be eliminated from the equations. We find that

v„ = f{p, z) sin <p, (55a)

vr = g(p,z) cos <p, (55b)

v, = h(p, z) sin <p, (55c)

p = q(p, z) sin (p. (55d)

AXIS OF ROTATION
1/

Fig. 14. Polar coordinates for the Sommerfeld type calculation of the spherical bearing. S = point of

smallest clearance, L = point of largest clearance.

At this point difficulties are encountered. It is relatively easy to eliminate g and q,

but the reduction to one variable does not seem possible. This is the place where the
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introduction of the stream function solved the corresponding cylindrical problem. An

analogous trick does not seem possible in this case. However, the symmetry of the

flow pattern is sufficient to permit the prediction that the resultant force is at right

angles to the axis of rotation and the line of centers.

Since the general problem appears insoluble, we shall solve it in the Reynolds limit.

This also has not been done up to this time. We place a spherical polar coordinate

system into the center of the two spheres, pointing with the polar axis toward the point

of least clearance (Fig. 14).

For such a coordinate system the components of the boundary velocity are

V# = — wa sin tp, (56a)

Vv = — cca cos # cos tp. (56b)

Substituting these expressions into (15), we get

1 d I, s • „ dp\ , 1 d /, 3 dp\ n 2 ■ dh /rlTN
-7— — \h sm#TTf + . 2 0 \h -f-( = —67?acosing jr • (57)
sin & d& ( d$) sm & d<p { dtp) a&

In the coordinate arrangement of Fig. 14 h is only a function of &] in good approxi-

mation,

h — c — e cos &, (58)

where c is defined in (39) and e in (24) or Fig. 5. Equation (58) shows, in agreement

with (55), that p has the form

p(d, <p) = q{&) sin <p,

where q(&) satisfies an ordinary differential equation. One can verify by direct inspection

that this equation has a simple particular integral which is

, > 3r/a2coe (c — e cos#/2) sin??

q{ ' ~ c2 + e2/4 (c - e cos tf)2

This integral is the only one which is finite at # = 0 and d = -k. It is, therefore, the correct

solution for the closed spherical bearing. The pressure distribution in such a bearing

is thus

. 6nea2o>(2c — e cos &) sin ■d sin <p

PM - (4c. + e,)(c _ e Mj)r- • (59)

There is a remarkable similarity between (59) and (40), particularly if we specialize

(59) to give us p along the equatorial plane (see Fig. 14). In this plane <p = ±7r/2, and

the azimuth ip essentially equals S. More precisely, we must substitute

cos & = COS I/*,

sin & sin ip = —sin ip.

Using these substitutions, we find that the dependence of p on the azimuth \p is exactly

the same in the two cases. There is a minor difference in magnitude which shows up

best by forming ratios:

p(59) _ 2c2 + e'

p(40) 4c2 + e'
2 , • (60)
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In view of the inequality

0 e < c,

this means that

1 < < 3 . ( }
2 - p(40) 5 ;

It is clear from this analysis that side leakage does not play a very essential role in

the theory of lubrication. All the main features are the same in the two cases: the

pressure maximum near the point of least clearance, the region of negative pressure on

the exit side, the anti-symmetry of the pattern. The factor sin <p gives the continuous

transition from the entrance to the exit side, and a factor of the order 1/2 indicates

the effect of side leakage on the pressure.

The symmetry of the problem specifies, as pointed out earlier, that the resultant

force is at right angles to the line of centers and the axis of rotation. In magnitude, the

contribution of ir„ , as given by (59), outweighs all others; this may be verified by a

study of Sec. 2 or by direct computation.9 The resultant IF is obtained from the formula

p r /»2t

W= sin idxp p(d, <p) sin # sin <p
Jo Jo

which yields

f {<«'+«■> ^ H. m

where a, c and e are given in (39) and Fig. 4. Now ir0 makes no contribution to the re-

sultant torque. We must pass, therefore, to the next order, which is due to the shearing

stress (terms for u which are linear and quadratic in z; see Eq. (5b)). This frictional

torque is parallel to the axis of rotation and is obtained on either surface from the

formula

±T = -qa J sin & d§ J d<p jsin <p + cos d cos <p j-

The derivatives in question are obtained from (14), (56) and (59). The result is,

for the inner surface:

m 7r?7<x4a> 4(c2 + e2) J,_2 , .ax c + e n \
T> = — \(c +«) i°g - 2°®/; (63a)

for the outer surface:

rn   7T77& C0 2(2c 6 ) J / 2 i 2\ l C "l~ £ ey \
T* ~ ~4?+^ r + e) log~e ~ 2cr (63b)

As above, (Eq. (42)), the torques are not exactly equal and opposite because the ful-

crum is in the center of each sphere. If we reduce to the same fulcrum, with the help

of (62), the torques check.

'Bull. Nat. Res. Council 84, 1932, p. 236. This publication calculates the effect of shear for the

Sommerfeld case, but ascribes the wrong direction to it. The more rigorous treatment is also very inap-

propriate as compared with our Sec. 3.
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The coefficients of friction become

/. = , (64a)

/, = ^ • (64b)

There are some practical difficulties in making the flow pattern of this bearing

visible. The general nature of the flow, as given by (14), is the same as for the Sommer-

feld bearing; there is a viscous drag flow which varies linearly across the film. This

Fig. 15b. Lines of current flow for the spherical bearing.

A = axis of rotation, S = point of smallest clearance.

drag has a tendency to accumulate material on one side; the accumulation is removed

by a Poiseuille type flow which varies quadratically across the film. This flow is more

complex in the present case than in the Sommerfeld case, for it can go at any angle

to the movement of the bearing. The best over-all picture of the flow is gained by showing
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the total stream flow Q, that is, the velocity integrated across the film. It results from

the formula

Q(«>, <p) = [ W, <P, z) dz
Jo

or from (14a),

Q = iU./i2 + iU 2h\ (65)

Fig. 15b. Lines of current flow for the spherical bearing.

A — axis of rotation, L = point of largest clearance.

Q is a divergence-free vector in two dimensions and is, therefore, derivable from a stream

function which measures the flow between two points on the spherical film in cm3/sec.

And ^ is obtained from (60) by either one of the two equations

d^
— = — aQv or — — aQ0 smt).
ay o<p
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If we apply Eqs. (14b), (14a), (65) and these last relations successively to (59), we

find for

2

^ = A z 2 (2e2 — ce cos # — e2) sin d cos <p. (66)
4c + e

Two photographs of a plot of this flow pattern on a sphere are shown in Fig. 15. The

case picked is the one having the most extreme side leakage when e = c. The side leakage

around the point of smallest clearance (marked S) is clearly visible. It is also seen that

the flow does not take place about the points A which mark the axis of rotation but

about a point which is displaced to the side of large clearance. The vortex points, Ob-

tained from (66) by setting

T , 0 . max,
W, <p) = •

mm,

are

cos = — 21 > sin = °-

This indicates a maximum displacement of the vortex by 30°. The total flow between

vortices comes out to be

(r2 - <? /4-ni3/2

¥»« - = a2o, c2 + /sZ • (68)

The flow is thus always smaller than it would be without eccentricity, but there is no

change in order of magnitude, in contrast with the cylindrical case.

It should be emphasized that Fig. 15 shows only the integrated flow across the liquid

film. The actual velocity varies widely from layer to layer. As an example, we see in

Fig. 16 the flow in the layer adjoining the stationary sphere. The flow lines obey the

equation

sin & cos <p , ,
  : ; r   = const., (69a)
| —2c — ce cos# + 4ce — e cos&\°

or for the special case e ~ c, & <3C x/2,

 ^ cos <p

| 4(c — e) — c&2
= const. (69b)

The point of minimum clearance is marked M in the figure. There is little resemblance

between Fig. 15 and Fig. 16. The essential feature of the latter are the points R which

separate two regions of behavior. Along the line RMR the direction of fluid motion

coincides with the direction of bearing motion, but outside of R along the same straight

line the direction is reversed. We can observe this phenomenon for the cylindrical

bearing in Fig. 8, where the corresponding points are also marked R. It is obvious from

Fig. 8 that an integrated flow pattern cannot give these essential details.

5. Conclusion. This paper has given formulas of greater rigor and generality than were

available heretofore for the cylindrical bearing. As an example, we may mention the

new formula for the load carried (Eq. (35)) and the new formulas for the coefficient of
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friction (Eqs. (38)). The spherical bearing is brought up to the status which the cy-

lindrical bearing had up to this time by the Eqs. (62) and (64). It is unfortunate, how-

ever, that these results are of limited usefulness because of the negative pressure difficulty.

The approach of the research worker to this basic problem has been rather sterile.

The negative pressure region has been referred to as "inoperative"10, and the general

Fig. 16. Flow pattern in the spherical bearing. Flow direction at the stationary surface. Region limited

to point of minimum clearance. D = direction of moving bearing surface, M = point of minimum clear-

ance, R — points of flow reversal.

practice has been followed of simply ignoring this region in all integrations. This pro-

cedure yields essentially a frictional torque divided by 2 and a load divided by 2 sin a,

where a is the angle between load and line of centers. The procedure is intuitively

reasonable, but is open to the objection that it is not mechanically sound. Any cut-off

line leaves unbalanced stresses acting across it; and if the line of centers is chosen for

this purpose, there remains an unbalanced shearing stress which is responsible for the

increase in the load obtained. This seems to indicate that we must first understand

better the manner in which the liquid cavitates in the "inoperative" region. Then the

hydrodynamic equations can be reexamined and corrected accordingly. New values for

force and torque will thus result which will be mechanically consistent.

In the absence of such a theory we must adopt a cautious attitude in applying

10H. W. Swift, Proc. Inst. Civ. Eng. 233, 267 (1932).
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theoretical formulas. It seems plausible to assume that the order of magnitude of the

pressure maximum and of its distance from the line of centers would be reasonably safe

against modifications because the differential equation is the same on the high pressure

side of the bearing. Limiting ourselves to the Sommerfeld limit (although the general

case can be handled too by observing that the F term in (27) is generally small compared

with the other two and that B and C are very simply related), we can calculate the

maximum of (40) and its location. We find that

cos Vw = 9 23^ 2 (70a)
Zc + e

or

+ 1 » _ l~(2c — e)(c - e) ~[1/2
tan 2 i^mai L(2c + e)(c + e)J " (70b)

Formula (70) applies to all loads; but if we are mainly interested in high loads, we

can take the combined cases, limit (a) and limit (b) only:

c~e, h = c — e « c.

We then get for the distance D of the pressure maximum from the line of centers,

Z>~2atanf = (|^)/a.

This is written in a more useful form from (39) as

D = =
2 h Y/2

3 1/ai — 1 /a. j • (71)

It is very satisfactory that only the difference in curvatures enters into (71). This makes

D dependent on local conditions only, as postulated. If we substitute (70) into (40)

and make the same approximation as above, we get

Pm" = (32) (l/o, - 1 /a2)1/2h3/2 ' (72)

This formula also depends on local conditions only, and thus we may expect (71) and

(72) to hold under much wider conditions than the derivation given would indicate.

A simple alternative derivation which does not use the film lubrication condition

proceeds, for instance, from the plane and cylinder case, limit (d). From (32) and (50)

we find that the pressure along the plane has the following form:

T) = 8CLIjd 7 2 I 2\2 *
v (x + s )

Assuming as before that ~ a » s, we get from (26),

2 2 h

1/a, — I/02
= 2 ha.

Maximizing p and substituting s, (71) and (72) follow exactly.

Calculations proceeding from more general assumptions have been prepared by the

author. Thus formulas (71) and (72) have so wide a sweep that they can very probably
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be applied to convex types of contacts where the curvatures would add, of course. More

attention must be paid in this case, however, to other stresses which become more

nearly comparable, as the results of limit (d) show.

The difficulties which the theory encounters in the field of lubrication indicate

strongly that both theory and experiment should concentrate part of their attention

on the negative pressure problem and its possible connection with cavitation. A clear

mechanical picture of hydrodynamic lubrication, backed up by quantitative measure-

ments, is probably essential, before modifications of this picture can be discussed with

hope of success.
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