
59

THE SPECTRUM OF FREQUENCY-MODULATED WAVES

AFTER RECEPTION IN RANDOM NOISE—II*

BY

DAVID MIDDLETON

Cruft Laboratory, Harvard University

Part I: Introduction and Discussion

In our earlier paper [l]f expressions for the spectrum of an FM wave received in

the presence of random (fluctuation) noise were obtained in the two extreme cases of

no limiting and "super"-limiting.** It is the purpose here to develop the completely-

general theory for the demodulated wave, taking into account the effects of arbitrary

amounts of limiting on the noise and signal spectra and power of the low-frequency

output of the receiver. We are interested in the spectrum because the signal-to-noise

ratio determined at the output depends noticeably on the spectral distribution after

demodulation when broad-band FM (in which the IF filter width is large compared

with the audio response) is used. In the case of narrow-band FM (where the IF width

is comparable with the audio) we are concerned mainly with the integrated spectrum or

power output, so that spectral shape is not so significant (cf. [2]). The general theory

is outlined in Part II, including an examination of important special cases, and a de-

tailed study of noise alone is given in Part III; the Gaussian filter amplitude response

is assumed. Remarks on signal and noise are contained in Part IV; applications to

evaluation of the signal-to-noise ratio are discussed more fully in [2].

A satisfactory analytical model of the actual nonlinear elements in the receiver—

the limiter followed by the discriminator—can be constructed if we assume: (1) that

the physical discriminator is replaced by an "ideal" one which responds everywhere

linearly with frequency; accordingly, the output current (or voltage) is directly pro-

portional to the instantaneous difference frequency between the wave and the central

or resonant frequency of the (symmetrical) IF, limiter, and discriminator bands; (2)

that the filter response of the limiter is taken to be wide enough to pass the IF portion

of the limited signal and noise without distortion due to frequency selection. In practise

this means that a limiter band width several times the IF spread is needed; it can easily

be obtained, since the limiter circuit is of necessity a low Q device. (If it were not,

filtering would restore randomness to the noise, and the limiting would be nullified.)

The case of the discriminator's response is more critical, but if the linear portion of

the actual characteristic is at least twice the r-m-s frequency deviation, distortion will

not be serious, and our idealized model is then a satisfactory substitute (cf. [3, Chs. 4

and 5] for a treatment of an actual discriminator when there is no limiting).
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support extended Cruft Laboratory, Harvard University, jointly by the Navy Department (Office of

Naval Research), the Signal Corps of the U. S. Army, and the U. S. Air Force, under ONR contract

N5-ori-76, T.O.I. The author wishes to thank Mrs. Roger Stokey and Miss Marilyn Lang of the Elec-

tronics Research Laboratory, who performed the calculations for Figs. 1-6.

fNumbers in brackets refer to the bibliography at the end of the paper.

**In [1] is listed previous work on this problem, of which the papers by Stumpers [Proc. I.R.E. 36,

1080 (1948)], Blachman [3], and Rice [9] are particularly to be noted.
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The narrow-band wave leaving the IF and entering the limiter may be represented as

V{t) = R(t) cos [coi + 0(2)], (1.1)

where R is the envelope and 0 a phase angle. Now /( = co0/2x) is the central frequency

of the IF, limiter, and discriminator; both R and 0 are slowly varying functions of the

time compared with u0t. Letting f(iz') be the Fourier transform of the limiter's dynamic

characteristic g{V), we may write the output of the limiter as (cf. [1]),

Fo(0 = f f(iz) dz exp [izR cos (o}0t + 0)1
Zir J c

= 53 Bn(R) cos [n(w0t + 0)], (1.2)

where

BJR) = ^ fc f{iz)Jn(Rz) dz, (1.3)

(n = 0, 1, 2, •••)•

The contour C extends along the real axis from — <» to + 00 and is indented downward

about a possible singularity at z — 0. The various Bn(R) are the envelopes of the n

spectral zones produced in the limiter by its nonlinear action [4, Sec. 3], while the

nd (n > 0) are the respective phases. Only the band concentrated about f0(n = 1) is

passed to enter the discriminator. One may show [1, Eqs. (1.7)-(1.9)] that the low-

frequency output of the discriminator is

E0(t) = B^Rjd = - [ f(iz)J1(Rz) dz. (1.4)
7T J C

The transform of the characteristic of our idealized limiter [1, Fig. 1] is

f{iz) = 2/3[1 - exp (-zR0z)]/(i'z)2, (1-5)

in which /3 is a tube constant and R0 is the level at which limiting takes place; the factor

2 arises because both positive and negative portions of the wave contribute to the

envelope. Explicitly, E0(t) is found for our particular choice of f(iz) [or g(V)] to be

E0(t) = fiat

4R0

R, 0<R<R0,

Ft(—1/2, 1/2; 3/2; Rl/R2)

(1 - Rl/R2)1" + sin"112}, Ra <R.

(1.6)

The details of the analysis for the correlation function, the spectrum, and power follow

in Parts II and III, and examples are illustrated in Figs. 1-6.

At this point it is convenient to list the principal parameters that appear throughout

the text and in the figures: b0 = mean input noise power, at the IF output, A0 = peak
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carrier amplitude, R0 = amplitude at which limiting takes place, It = envelope of the

wave leaving the IF stage, ~p = Al/2b0 = ratio of mean carrier to mean noise power

at IF output, r0 = R0/(260)1/2 = ratio of the r-m-s clipping level to the r-m-s noise

level, oid = (angular) frequency displacement from exact tuning, ub = (angular) fre-

quency proportional to the width of the IF spectrum (see Eq. (3.3a)), 0 = co/coj =

f/fb = a normalized frequency, measured in terms of the IF spectral width, w0 =

maximum spectral intensity of the noise at the IF output, /3, k = limiter and discrimi-

nator circuit constants, D0(t) = (angular) frequency modulation, R(t'), r(t) — correlation

functions, i}{t) — phase of the modulated carrier wave.

A number of general observations can be made. First, as shown in Figs. 1 and 2,

the total power output drops with increased limiting, since less of the original wave is

then passed. When there is no carrier but only fluctuation noise, we see from Fig. 3 a

similar behavior, noting that in all cases when the limiting threshold (R0) is very large,

the output power remains constant for a given input noise voltage and varies directly

with the amount of signal power, if a carrier is present. The signal is always suppressed

when it is weak relative to the noise (cf. Eq. (2.10)).

Second, as in any clipping or saturation process restricting the instantaneous ampli-

tude of the disturbance, limiting spreads the spectrum; for noise alone, the precise

extent of the spread is shown in Figs. 4 and 5. Figure 4 compares absolute values of

the spectral intensity for varying amounts of limiting, and Fig. 5 gives a comparison

of the same spectra, all now normalized to unity at / = 0, the point of maximum in-

tensity. The reason for the spread lies in the fact that clipping produces an (infinitely)

large number of new harmonics of the original wave, and the difference or beat fre-

quencies between the original (adjacent) components, all relatively close to the resonant

frequency /0 , are the source of the added intensity in the low-frequency part of the

spectrum. The effect, of course, is much more pronounced the heavier the clipping

(R0 —» 0). For no limiting, the spectral intensity falls off ^ exp [— (///&)2], while in

the instance of "super"-clipping the decay goes as (///&)-1. The "tails" of the spectrum

well away from zero frequency are quite extended (cf. Figs. 4 and 5 once more). One

finds also, as earlier [1], that limiting, when the carrier is much greater than the noise,

yields a vanishingly small noise spectrum at or near / = 0; if there is no limiting, how-

ever, this is no longer true. Herein lies the superiority of broad-band FM over AM

and narrow-band FM for large carrier amplitudes. The present paper, in conjunction

with the results of [1] and [2], completes our theoretical discussion of FM reception in

fluctuation noise.

Part II: General Theory of Arbitrary Limiting

As before (cf. [1]) the correlation function of the low-frequency output of the dis-

criminator is*

R0(t) = [E(to)E(t0 + t)]„ = /c2[B1(fl1)B1(fi2)0I02]av • (2.1)

The bar denotes the statistical average over the random variables describing the noise,

"Throughout this paper we write the correlation function as Ro(t), and its normalized version as ro(t),

to facilitate the distinction between the correlation function and the envelope R, and clipping level Ro .
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while [ ]av indicates the average to be taken over the phases of the modulation, if any.

By a well-known theorem (cf. [5], [6]*) the mean power spectrum is the cosine Fourier

transform of the correlation function:

W0(/) = 4 [ R0(t) cos cct dt, (o> = 2x/),
Jo

and conversely (2.2)

Ro(t) = [ W0(f) cos wt df.
Jo

The narrow-band input voltage V0{t) of the limiter-discriminator element and the

final low-frequency output Ea(i) of the discriminator are represented precisely as in the

earlier paper [1, Eqs. (2.3)-(2.11)]. The present analysis proceeds in the same fashion

also, except that instead of the integrals Kt and K2 [1, Eqs. (2.20)] one encounters a

more general version

K1 = f dx f dyx + y22]'/2) exp {-ixz - iyz'),
J — CO J—CO I XfX + y

K2 = dx J" dy y JMj+pU2) exp (-ixz - iyz'),

which it is convenient to reduce to a single integral. Here J is a variable corresponding

to the variable of integration in (1.4) which is introduced to account for the general

dynamic characteristic [whose Fourier transform is /(t£)] considered here. As before,

the following important quantities are needed:

bn = J (to — co0)nw(f) df; <j>n(t) = ~ J w(f) cos (« — w0)t df;

(2.4)
Tn(t) = <t>n{t)/<t> o(0).

Here w(f) is the mean input power spectrum of the noise, essentially determined by

the IF filter response, which is assumed to be symmetrical about f0 , the resonant fre-

quency. The quantity b0 is accordingly the mean input noise power.

A more detailed discussion of the principal steps in the analysis is given in [1]. The

final result is the low-frequency correlation function

Ro(t)N = ]£ it, ro(t)2m+k\ ^ [3Ct,2m,*+i COS (k + l)(r/2 — 17,)
k = 0 m = 0 \

+ 3Cj.2Ml|i-ii cos (k — 1)(>72 — Vi)]

+ 01 (0 2 + C0S k(V2 — Hi) — | 3Ct,2m + l,4 + 2 COS (k + 2)(jJ2 — 7/,)

2 cos (k 2)(„ 771)

(2.5)

*See also S. O. Rice, Bell System Tech. J. 23, 282 (1944) and [4] for further references.
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+ (26„p)1/201«) (vi + ^ [(1 - $3Ct,2„,t+1(3Ct,2m+1,i+2

- Wk,2m+\,k) sin (k + 1)(»72 - 171)

3Ci,2m,|i-l|(3Ci,2m + l,4 3Cfc, 2m +1, I k-i I) SU1 | k 1 | (tJ2 ^7l)]

"i" 2b0pVlV2 cos &(r)2 jji) 503Ci;,2m,t+i "4" 2 (3C*,2m,it+i 3Ct,2m,u-n)

in which

iji,2 = codi + ^1,2 and r;lt2 = cod + ^1,2 = co^ + ^0(^1,2);

p = Al/2b0 and ̂  = J D0(t)
(2.5a)

The result (2.5) is formally identical with our earlier expression for R0(t)N (cf. [1, Eq.

(2.28)]) where only the cases of no limiting (R0 —»») and extreme limiting (R0 —» 0)

were considered. However, the amplitude functions 3C now take the more complex form

7 (2m+i)/2 /» r» co

X,r„) - + 1)()„, i Jc m dt I J,(rfl d,

X f p'"J,(r„)J.(A.p) exp l-p'b.J'i) dp, <2 li)
*'0

(m = 2m + n + ft = 1, 3, 5, • • •)•

For the linear limiter considered specifically here, 3C becomes (cf. Appendix I)

-p ^"+t)/2 r K^y/boY'2

2(2m+l,/2[m!(m + k) !]1/2 " g!x1/2[m!(m + k) !]1/2

v J- r r(-s)r(i - s)tI>+1T(v + 8) . . _ ,
X 2« J_mi (s + 1/2) T(s + l)T(3/2 - s) 1 + ' 9 + ' '

(2.7)

where r0 = R0/(260)1/2, v = (/u + g + l)/2 = 1, 2, 3, • • • , I\ is given explicitly in

(A1.15). [Similar results may be obtained in the same fashion for other types of limiter

response, i.e. choices of f(ig) other than Eq. (1.5)].

As before, the complete correlation function R0(t) is obtained after the average over

the phases of the modulation has been performed. The mean power spectrum follows

at once from the Fourier transform of R0(t), according to (2.2). We observe that the

output, as in amplitude modulation (cf. [7]), consists of three classes of modulation

product: (1) (ra X n) noise, produced by the beating of noise components with one

another; (2) (s X n) noise, which is the result of signal and noise beating together; and

(3) (s X s) signal harmonics. In (2.5) only the terms in the first bracket [ ] for which

q = | k — 1 I, k, | k — 2 |, etc. = 0 represent (n X n) noise; the remaining terms of

the first and all those in the second and third brackets [ ] are (s X n) noise, except

in the latter when m = k = 0, in which case we have the signal components.
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1. Signal Output. This follows immediately from (2.5) and is

^o(0(«X») = -4o['7l'?2]av3Co01 (2.8a)

= ^vr+ D0m^ + D0(t0 +1)]}ay\l ~ exp (~p)
IT { p

+ ± (—1)((—r®)' WTl ([*W + W + !)/2 - vK3/2 - I)/2 - log r0 (2.8b)

 I 1 p f) 4_ 1. 2- _ _ i V U + + n + 1)( — v)'
2l{2l + l)_PlU + 1; 2' V) 2 ~i (2)„n!

Fig. 1. Discriminator output—(a) Correlation function for signal components, (b) Mean signal power

output, (c) Mean square d. c. output—as a function of carrier strength for various degrees of limiting.

Here the abscissa is 10 logio p, where p = (mean carrier power from IF)/(mean noise power from IF);

17 is the modulation, including any deviation (ay) from exact tuning (/0 = fc).

from (2.5a) and (A1.15); 1p is the logarithmic derivative of the Gamma-function. Note

that because of our assumption of an idealized, linear discriminator, the modulation is

received undistorted. Figure 1 illustrates R0(t) <sX») as a function of p for various de-
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grees of limiting. When there is no limiting at all (r0 —>°°), or when the limiting is ex-

treme (r0 —> 0), we obtain (cf. Eq. (A1.18)) the expressions of our earlier analysis

[1, Eqs. (2.36), (2.37)]. In general, when the carrier is very strong compared with the

noise (p —»<»), we find (cf. (2.8a) and (2.19)) that for all degrees of limiting such that
Ro < A0 (or r„ < pl/2),

BoW<.x.,W^ xYlviVtU -®Ro ̂ (-1/2, 1/2; 3/2; R2/A2)2
TV

= 4 ^202[lhlj2]avRo([l - R2/A2]1/2 + j* sin"1 (2-9)

Ro < Ao .

Here the noise is suppressed by the signal. Compare (2.9) with the square of (1.6);

the dependence on R0 and A0 ( = R if the noise is negligible) is the same, as we would

expect.

At the other extreme of carriers weak compared with the noise (p —» 0), (2.8) re-

duces to

«o(0(.x.)]^o — /9/cR°) [r?ii?2]av232|l + S
(-l/2)m(-r20)" / 2m

m!2 \2 m + 1
(2.10)

X [i(m) — \K3/2 — m)/2 — log r0 — l/2m(2m + 1)] f .
2

This shows at once how the stronger noise suppresses the signal: instead of the (power)

output being proportional to p, it is proportional to p2, just as in the analogous situation

for the detection of AM signals by a half-wave rectifier.

2. The d-c output. The d-c output is obtained from the correlation function if we let

t —>oo in (2.5). The square root of the result gives us the desired mean amplitude,

which is

[£o(0]av = KpA0[Ud + A,(0]av3COOl . (2.11)

By a different method (cf. [2]), we may express the d-c as an integral,

[S^j]„ = 2KWw'e- B1(r)/1(2rpl/2) exp (-r2) dr, (2.12)
Jo

where BJr) is given by (1.3) on replacing R by r and multiplying by (260)1/2. Numerical

results are also shown in Fig. 1 (for the square of the d.c.), which may be obtained

either by summing the series in (2.8b) or by graphical methods applied to (2.12). Simple

forms of [£"()(<)]*v occur when there is either no limiting or extreme clipping, (cf. [1,

Eqs. (2.36), (2.37)]).
3. Mean power output. By a well-known theorem [4, Sec. 2 and Appendix II] the

mean power may be derived from the correlation function on letting t —> 0 (cf. (2.2)).

The result in this instance is the double series given in [1, Eq. (2.33)], on replacing H
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by 5C. Again, a simpler expression has been found in the form of an integral (cf. [2]),

namely,

Wo = K exp (-p)|piy]av ^ B^rf exp (-r2)[70(2rpt/2) + I2(2rp1/2)] dr/r

(2'13)

— —f B,(r)2 exp (—r2)I0(2rpU2) dr/rj.

The curves of Fig. 2 show how W0 depends on carrier strength for various clipping

levels in the important special cases [ij2]av = 0 (no modulation), and fo2]av = —</>2(0)/26o.

Fig. 2. Mean power output of discriminator as a function of carrier strength, with different degrees of

limiting. Here the abscissa is 10 logio p (cf. Fig. 1), and ij is the modulation, if any. The quantity b2 ,

obtained from Eq. (2.4), represents the second moment of the input noise spectrum w(J).
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Specific calculations were made with the help of Simpson's rule (cf. [2, Part II]). In a

few special cases, however, W0 assumes a closed form

(no limiting: r0 ->oo)W0 = 260K2/32[^>[i}2]av(l - 1 ~ ^ (2.14)

and

(extreme limiting: r0 —> 0)W0 = (^rro) b0 exp (—p){[p[7?2],„ — <t>2(P)/b0]

X [7 - Ei(-r2)]

(2.15)

+ X) [[l2]» pm+2(2m + 3) — <t>2(0)pm+\m + 2)/b0]/(m + 1 )(m + 2)!},
tn = 0

where y = 0.2731 and Ei (—r2) is the exponential integral

- f, e~* dy/y.
*0

When the carrier is very strong we obtain (2.9), (< = 0). (Other limiting forms of the

above are given in [2, Part II]).

4. Two important limiting cases.

A. Strong carrier with limiting (A0 —R0 < An , bn ^ 0). Here the noise and

limiting levels are assumed small compared with the peak carrier amplitude, i.e.

A0 » (2b0)1/2, A0 > R0 [however, it is not necessary to assume that R0 5i> (260)1/2].

Then, in our expression for the output correlation function, obtained from (2.5) we

retain only terms in bo and b0, and discard the higher powers of ro1 and p'1. Our correla-

tion function reduces to (p —> <*> in what follows)

-^0(OiV ^-00102(0 COS (772 T]l) + 2 A0*5Q-Q0i<f>\(£) ' (?7i -j- 7)2)

X (3Coi2 3Coio) sin (7^2 Vi)

Al ■ • • • 2
■<^)o(0'7i172 COS (772 7?l)"(3Cl02 — 3C100) "I" •4o'/l'723Co

(2.16)

Now we need the limiting form of 3C when p —■ this is most easily found from (2.7)

and the asymptotic development of lFl [4, Appendix III] to be

3C 1 ^ — r (—^
IT \b0/

-((i+n/2

[m\(m + k) !]1/2

liri J-ni
^ _t_ I sT(-s) (t0/p)T(v + s)[l + (v + s)(v + s — q)/p + ■ • •] ^

(2.17)

2Tt J-ooi (s + 1/2)r(« + l)r(3/2 - s)Y{q + 1 - v - s)

Keeping only the leading term in the series, we easily find from (2.17) that

2 (2b V/2
3C012 3Coio = ~j~ 3Cooi > and 3C102 3Cioo = z ' 3Cooi > (2.18)

■^0 do
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where

-e 1 ■- ^Ro 1 r r(-s)(R0/A0f
„0lJ^° — A0T1/2 2Ti J.mi (« + l/2)r(3/2 - s) '

2^i(—1/2, 1/2; 3/2; Ro), (2.19)
4 k/3R0 j-, / 1 /r) t /<->. o /o. n 2\

it40

= ^[^d- r?/a*
7T L^O

;)1/2 + sin"1 ^ (Ro < A„).

The general procedure for evaluating the contour integral for 3C001(p —>o=) is available

in Appendix I. For the noise part of the output, the correlation function (2.16) is, there-

fore,

Ro(t)Noi.e — [ —02(O COS (r/2 — Jji) + <^>i(0('7i + V2) sin (»?2 — jjO

(2.20)
+ <t>o(t)v 1V2 cos (r/2 — ?7i)]3Cooi , (p ~; A0 > R0).

We observe that the coefficient of 3C200i in (2.20) is precisely that given in [1, Eq. (2.40)],

when X = 2, i.e. when there is extreme limiting. Our more general result also includes

the cases of moderate to negligible amounts of limiting (R0 —» A0 , A0 (2b0)1/2).

In a similar fashion (cf. [1, Eqs. (2.41)-(2.47)]) we obtain the alternative representa-

tion

Bo(0n.i.. *= 3Co01{(-| +

(2.21)

X J^ cos [« + J" Do(t') dt'~^ dx/x0|,

in which x0( = 2ir/o}a) is the period of the modulation and dn<j>0(t)/df = <j>n{t), (Eq. (2.4)).

Expansion of the integrand in a (cosine) Fourier series, using the integral form of

and the Fourier transform relations between the correlation function and the mean

power spectrum of the noise, gives us finally

W0(f) ^ (^)2 2f.(—1/2, 1/2; 3/2; R20/A20)

(2.22)

X X) Anw2[w(o30 + nua + ood + <o) + w{co0 + nwa + wd — co)],
n=0

(Ro < Ao).

Here An is the amplitude of the nth term in the development of [cos (172 — ih)Lv •

Equation (2.22) shows that when the carrier is strong and there is limiting at or below

the maximum carrier level, the noise spectrum always vanishes at / = 0 and is small

in the vicinity of zero frequency. This accounts for the great improvement in the signal

vs. the noise (cf. [2]) when broad-band FM (maximum modulation frequency small

compared with the maximum carrier deviation) is used at large carrier levels with

sufficient limiting.
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The mean power output, including the signal, is found at once from (2.9) and (2.20)

by setting t = 0. We have

(p —>oo)JF0 = Ro(0) - { Al + <t>o(0)lvU - #2(0) }3Com

(2.23)
= 2bo3Cooi{p[y]av + §([i?2]av - r2(0)) J, (R„ < A0)

showing how the strong carrier suppresses the noise [second term of (2.23)], as in the

detection of amplitude-modulated waves.

B. Strong carrier, little or no limiting (A0 —>cot A0 < R0 , b0 p6 0). In the extreme

of exceedingly strong carriers, when A0 < R„ the situation corresponds in the first

approximation to the case of essentially no limiting, for which 3C becomes from (A1.18),

_ kI (2_\n/2 p-*-'«+">^r(r2m + k + n + qVZ)

— 2 \bj r([<7 -2m - k - n + 21/2) ' y '
12m+n, dip—>oo   n It

The correlation function (2.16) then reduces to

R0(t)N k2/32{ -<t>2(t) cos (172 - ijj) + 260pi?iJ72}, (Ro > 40) (2.25)

and the noise spectrum associated with the low-frequency output is again precisely our

earlier result [1, Eq. (2.42)], viz:

W0(f) ^ k2|82 ^ An[(nua + ud + oo)2w(a0 + nwa + ^+01)
"-0 (2.26)

+ (no)„ + wd — w)2w{o>o + 1U>>a + — co)],

where we note, in contrast with (2.22), that the spectral intensity at and near zero

frequency does not vanish. Broad-band FM under these conditions is accordingly much

less satisfactory (cf. [2]) than when limiting is used. The mean power may be obtained

from (2.14) on letting p —»00.

Part III: Noise Alone

This is the simplest case to handle analytically; a complete discussion follows. Since

there is no carrier, p = -q = 77 = 0. We may therefore, from (2.5), write the correlation

function of the low-frequency output of our discriminator as

R0(t) = ± | —3Ci,2m,o 4"At)ro(t)2m+1 + \ X?,2m+1.„ -MOW"

(3.1)

- | 3C2,2m + l,0 ^>l(<)VO(02m + 2|.

Again, in the special instances of no limiting (r0 —»°°) and super-limiting (r0 —>0) (3.1)

reduces to the much simpler forms of our earlier treatment.* A general expression for

the mean output power W0 is found by setting t = 0 in (3.1) above; however, a compact

form, from which calculations are more easily made, may be derived from (2.13) on

letting p —» 0, viz.,

*Cf. Eqs. (3.2) and (3.8), and Sec. 3(a) of [1] for details



70 DAVID MIDDLETON [Vol. VIII, No. 1

WcL-,0 = r BJrf exp (-r2) (3.2)
Uo Jo I

Figure 3 illustrates the variation of the mean noise power as the limiting threshold is

changed.

1.0

• Wo/lK^M

.P = 0
MEAN NOISE POWER OUTPUT

-(NO CARRIER)

_V R0/V2b^

0 1.0 2.0 A 3.0
r0

Fig. 3. Mean low-frequency noise power output of the discriminator for different degrees of limiting

when there is no carrier; b2 is the second moment of the spectrum w(J) Eq. (2.4).

To obtain the spectrum we need only take the Fourier transform of (3.1) according

to (2.2). In the specific calculations, we assume a Gaussian spectral distribution for the

input noise, corresponding to the composite IF-limiter-discriminator frequency response.

We have

w(f) = wo exp [— (co — w0)2/ul\, and w0 = 2b0ir1/2/cob . (3.3a)

From (2.4) we find also that

<t>o(t) = b0 exp (—cot<2/4), 0i(<) = —Wbt<t>o(t)

$2(0 = /2 — Ti r0r2 = co(,t'o/2.

The spectrum becomes finally

(3.3b)

W0(f) = 2ir1/2&„a)i, £ 1 " " STT)(2m + 2>". (2m + 2)"

1 , „2 (, fi2
+ | 6„3C2,2m+li0(l - ^~qp-yj(2m + 2)"3/2j exp [- fi2/(2m + 2)] (3.4)

— | 603C2,2m+i,o(2m + 4)~3/2^l — exp [—fi2/(2m + 4)]^,
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where 0 = w/ub = f/fb. Figures 4 and 5 show the spectra for different degrees of limiting.

Figure 5 is the same as Fig. 4, but now the spectra are normalized in such a way as to

have the same intensity at / = 0. This demonstrates more effectively how limiting

3 4

Fig. 4. The spectrum of the noise output of the discriminator for various degrees of limiting when

there is no carrier (p = 0).

spreads the spectrum. A table of spectral intensities and a brief outline of the method

of calculation involved in Figs. 4 and 5 are given in Appendix II.

With no clipping or, conversely, with very heavy clipping, the spectra are given by

[1, Eqs. (3.7) and (3.9)]. These distributions are included in Figs. 4 and 5. It is interesting
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to observe that well out on the "tail" of the spectrum, where Q —the intensity falls

off in the following ways:*

wo(/)]r — x'vV^„cot exp (- fi2)

T7o(/)]r^0 ^ — Ro^O-.
Q—»oo 7T

(3.5)

o . a

Fig. 5. Normalized spectrum of the noise output of the discriminator for various degrees of limiting when

there is no carrier (p =0).

For intermediate amounts of limiting the behavior varies between the rapid falling off

exp ( —f22)] for no limiting when 0 is sufficiently great and the relatively slow decay

(Wr1) of super-limiting. Note also that for large clipping levels (r0 —»«*>) the spectrum

*See Appendix II.
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is independent of limiting, while for very intense clipping, the spectral intensity is

proportional to To (r0 —> 0).

Part IV: Remarks on Carriers and Noise

When a carrier accompanies the noise in the receiver, our final low-frequency output

is considerably modified, particularly if the carrier is intense relative to the noise.

Modulation further distorts the continuous part of the output spectrum, so that a

precise calculation of spectral shape becomes formidable indeed. In the more general

cases including a signal we use (2.5) and average over the phases of the modulation,

according to

1 rT°
Bo(0 = T~ dto(moi)Ro(t, to)N = [^o(0iv]av ) (4.1)

J- 0 Jo

to obtain the complete correlation function. Formally, we have only to replace the

amplitude functions H of our earlier analysis [1] by the more general 3C (cf. (2.6), (2.7)),

yielding the behavior for all degrees of limiting, the most important cases of which

(r0 —>°°, r0 —* 0) have been discussed in the earlier paper [1, Sees. 3,4], In the general

instance of arbitrary limiting the results of [1, Figs. 5-11] are expected to apply quali-

tatively, except that as the degree of limiting decreases, there is less spreading of the

spectrum for a fixed carrier power (p = constant). Out on the tails of the spectrum

(fl -»co) the intensity [for an originally Gaussian distribution of the type (3.3a)] falls

off at least as exp ( — fi2) for no limiting and at least as fi-1 when there is super-limiting.

The presence of a carrier (p > 0) increases the rate at which the intensity diminishes,

especially if the carrier is strong: the noise is then largely suppressed and the spectrum

is proportional to ft2 exp ( —Q2) (cf. [1, Fig. 8]). On the other hand, for weak carriers

the noise in turn suppresses the signal (Eq. (2.10)), and the distribution of the spectrum

will follow as if noise only were present (cf. Part III and Figs. 4 and 5). The effects of

modulation do not become noticeable, of course, until we attain large carrier powers;

Figs. 7-11 of [1] show typical distributions in the extreme of strong carriers with simple

forms of modulation (r0 —or r0 —* 0).

APPENDIX I: The Amplitude Functions 3eii2m+„,0(p; R0)

The quantities 3C, which appear in (2.6) for the correlation function, become for

the linear limiter used here
7 (2m + fc)/2

3C = 3Ck.2m+n,Q(p', R0) = ^ ' (A1J)

where

■2infi f (l — exp (—zR,r» =
IT J C

/c (- exP( *"<*)) dz J! (rz) J i(rp) dr

(A1.2)

X [ p"+1JaUop) exp (-&op2/2) dp, Gu = 2m + k + ri)
Jo

in which, from (2.5), we note that p. = 1, 3, 5, 7, • • • .
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We start by integrating over r first, observing that this integral is a special case of

Weber and Schafheitlin's more general expression. Using Gegenbauer's result* we obtain

Li(z, p) = J~ J i(rz)J i(rp) dr = 2 ^ pyn ^.(3/4, 5/4; 2; 4z2 P2/[z2 + P2]2) (A1.3)

which is defined for all z ^ p. When z = p, 2P\ is logarithmically divergent, and /,

assumes the formal value r(0)/2irz. Since the singularity is only logarithmic, it is safely

removed in the following integration over z. We have**

Up) = [ 1 - exp (-tRos) Li(Z) dz
J c z

(A1.4)
i ^ (3/4)„(5/4)„22" w2"'1 sin RoPui_ . f, (3/4)n(5/4)„2 r

P n-0 (2)nW.! i()
(in

cu2 + i)2n+3/2 '

Next, we represent sin R„p« as a contour integral involving T-functions, reverse the

order of integration, and finally sum the series. Thus we write

<R"'s:0)' (al5)

where the contour extends along the imaginary axis and includes the pole at the origin.

With the aid of Cauchy's theorem the integral may be evaluated to give sin R0pw, by

swinging the contour around in an infinite arc in the half of the complex plane for which

R(s) > 0, and hence enclosing all the singularities of r( — s). These singularities are

simple poles at s = m (m = 0, 1, 2, • • •), whose residues are ( —1 )m/m\ The convergence

of the integral and the proper vanishing of the integrand as | s | —> «*> along the infinite

arc are easily shown with the help of the asymptotic expansion of the r-function,f viz.,

r(dbz + a) !=oexp {(±z + a — 1/2) log (±z)=F z + (log2ir)/2 + 0{iz)}, (A1.6)

| arg (±2 + a) \ < ir, \ arg (±2) | < x, 0{z) —> 0, \ z \ —>«>.

For the integral in (A1.4) we find that

sin RqpmI u2"'1 du
0 (1+M2)2"

_ ■*! r feV'+1 r(-s) ds r u2n+2' , ,A1Tt
2?ri I 2 J ' T(s + 3/2) J0 (,/ + i)2»+3/2 du> ( ■ )(u2 + 1)

1 + s +

2T(2n + 3/2) J_„t \ 2 ) r(« + 3/2)
T1/2 J" f^opJ'+1 T(s)T(n + s + 1/2)r(n - s + 1) &

*G. N. Watson, Theory of Bessel functions, 2nd ed., Cambridge University Press, 1945. See p. 407,

Eq. (1), which is incorrectly given; a factor r(\/2 + 1/2) should be inserted in the denominator.

"Termwise integration is allowed, since the series is uniformly convergent, except at z = p, where,

however,

J | g(z) | dz exists.

See Titchmarch, Theory of functions, 2nd ed., Oxford University Press, 1939, p. 42.

fSee E. T. Whitfeaker and G. N. Watson, Modern analysis, Cambridge University Press, 1940, p. 279.
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on evaluating the Beta-function (which is defined, since R(s) < 2n + 1/2). Inasmuch

as r(n + s + 1/2) T(n — s + 1) = T(s + 1/2) T(1 — s)(s + 1/2)„(1 — s)„ , and since

(3/4)„(5/4)n22"~1 = T(2n + 3/2)/ir1/2, from the duplication formula for the Gamma-

function, we see that the series in (A1.4) becomes

5'' + '(li? ~ 8)" - ^ ^ '-«>*')- r(, + 1W3/2 - ,) <A1'8>

by the well-known summation formula for 2FX . The integral L2(p) reduces finally to

T (A *— l-L r —sr(—s)2(R0p/2)2,+1 ]
2(p) p2 \2« ■/_„,• (s + 1/2)r(s + l)r(3/2 - s) J' ( )

Integration over p, with the help of [4, Eq. (A3.7)], gives us :

r, = f p"+1Jq(A0p)L2(p) exp (—pV2) dp,
T J o

k/3 v"2 (2_Y2 J_ r* -sT(-s)Vo+1T(v + s)
ir1/2 q\ \bj 2iri i_„,- (s + 1/2)r(s + l)T(3/2 - s)

(A1.10)
X iFi(v + s; q + 1; — p) ds, (v = (n + q + l)/2 = 1,2, • • ■),

where p = Al/2b0 and r0 = R0/(260)1/2. This form is particularly useful for large values

of p, as then we may replace by its asymptotic development before evaluating the

contour integral.

We observe that the integrand of (A1.10) contains a simple pole at s = 0 and double

poles at s = 1(1 = 1, 2, • • •). We need, therefore, to evaluate an expression of the form

L = ~ [\ r(-s)7(s) ds, (Al.ll)

where/(s) contains no poles in the right complex half-plane [R(s) > 0] and T(—s)/(s)

is finite at s — 0. The residue Rt at the double poles s — 1(1 > 1) of T( —s)2 is found

from the Laurent expansion to be

'■-[i= Mr. k~s + irn-s)2m}
8 = 12.1

(A1.12)

Using Euler's representation of the T-function,

r(-s) = lim \n\ri"/(—s)(—s +1) • • • (—s + n)],
n—*oo

we get

R, = lim ({ — 2n\2n~2lf(l) logn + n?n~2lf'(l)
«-+ oo

+ 2nfn2lf(l)[-l/l+ l/(-l+ 1) %

+ ••• + 1/-1 + 1 + 1/2 + +l/(n - Z)]}

+ {(-02(-^+ l)2 ••• (— l)2• l2• 22 - ..(»- I)2}).

(A1.13)
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Since

lim'i™(1 + l + I+ "■ +«-log")

— y = 0.5772 • • • , and ^(m) = 1+^ + ^+ • • • — — y,
Z O in

where y is the Euler-Mascheroni constant and is the logarithmic derivative of the

T-function, (Al.ll) becomes

l = r(o)/(o) + £ ^2 vm - 2mm- (ai.w)

[The logarithmic derivative of the T-function is tabulated in Jahnke and Emde, Tables

of functions, Stechert & Co., 1938, pp. 9-22; note, however, that Jahnke and Emde's

definition is related to ours above by ^j.e. (z) = \p(z + 1)]. The leading term of (A1.14)

represents the residue at s = 0. If we observe that

jdil

and that
ds

= 2(logr0)ro'

| trfr + ,) ,Ft(p + ,)]}___ = r(,)», ± {'+ '

r(3/2 - Z) = (— 1) V/2/2(—1/2)i ,

we obtain finally for (A1.10)

4 rt"n /2 \"/2 f

rwri(';; i + i; - p)

x

f. (,),(-l/2),(-rg)' / 21
^ £l (Z!)3 \21 + 1

+ *(I + l)/2 - *(3/2 - 0/2 21(21 + 1) (A1.15)

- log r0J + I; q + 1; - p)

(y + !).*(>> + I + n)(-VY\\

2 h (<? + l)„n! //'

(v=m + (k+n+q + l)/2 = 1, 2, 3, • • •)•

In cases of extreme or super-limiting (A1.15) immediately gives the behavior as a

function of the relative limiting level r0 as r0 —> 0; we have accordingly,
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lim 3C (v r ) - — kb(—PQ/°'T^2m + k + 71 + g + l]/2)
lim3Ct,2m+n,a(p,r0) w KP\bJ q\[m\(m + A:)!]1/2

X iFi([2m + + n. + q + l]/2; g + 1; — p)

(A1.16)

= ~ R-oP kH k,2m + n,q(p', 2),
7T

where Hk,2m+n_Q is the amplitude function defined in an earlier paper [1], At the other

extreme of no limiting (r0 —>°o) we attempt to expand (A1.15) or (A1.10) in a series

in (r0)_1. This is done by displacing the contour in (ALIO) to the left of the imaginary-

axis, a process that is valid for all R(s) < 0, since it is readily shown from (A1.6) that

the integrand vanishes as exp ( —ir | Im(s) |/2), when J„(s) —» ± °°. We assume for the

moment that v is not an integer. Then the first pole for R (s) <0 occurs at s = —1/2,

and succeeding poles lie at s = —v — I, (I = 0, 1, 2, • • •). Applying Cauchy's theorem

to the region bounded by the displaced contour, the infinite arcs at Im(s) —> ± oo, and

the original contour, we obtain the asymptotic development

r* - (!)*/2{i r(" ~ 1/2)"^1(" - V2; ff + i; - v)

(A1.17)
-l-r(v)r(y+ pij-" y, OOfr + l);(ro)-2' , . _ A

7T1/2r(3/2 + v)r(l - v) fa {v + l - l/2)(3/2 + v),l\ v A P)f-

Now letting v —> 1, 2, • • • we see that the series in (Al.17) vanishes (since T(1 — v) —*

± oo, or more fundamentally, as a consequence of r(i> + s)/r(l + s) not having poles

when R(s) < 0), and we are left with

k6 /2 \n/V/2

lim Xk,2m+n,a{p) r„) = YWJ q! r^2m + k + n + q]/2)

(A1.18)
X iFi([2m + k + n + q]/2; q + 1; - p) = PKHk,2m+n,,(P) 1),

which agrees with Eq. (2.29) of our earlier work [1]. (If we note that (sin R,,pm/m)]R0-.--o =

7t5(m — 0) we obtain (A1.18) directly from (Al.4) and the integration over p, since

only the term n — 0 yields a nonvanishing result). Unfortunately, the above approach

does not give the succeeding terms in roand other methods must be sought.

APPENDIX II: Calculation for the Spectrum of Noise Alone

The general spectrum of the noise output of our discriminator is given by (3.4) and

the pertinent amplitude function 3C follow from (A1.15) when p = 0, namely, 3C-lt2m,o ,

3Co,2>»+i,o j 3C2,2m+i,o . Explicitly, these quantities are

3Cl,2m,0 = (m + 1) 1/2Gm(l20), 3C0,2m + l,0 = ,

(A2.1)
m + lY/2/2

3C,
m + 2

y/Y—Y'V fr2l
/ XbJ G"l+l(r°)'
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where

r / 2\ 4k/3t„ J f,(-r=)!(-l/2)i(m+ 1), / 21 \
= \1 + 2. (n)a IsT+T/

X [*(0 + + l)/2 - *(3/2 - 0/2 - *(m + I + l)/2 (A2.2)

~ 2i(2Z + 1) ~ 2 l0g r°T

The series for Gm(rl) converges with satisfactory rapidity for all r0 equal to or less than

unity, but unfortunately the series (3.4) for the spectrum does not converge at all

speedily when r0 ^ 0.3 or more. Since accuracy to within a few per cent is quite sufficient

r0

Fig. 6. The normalized spectrum of the noise output of the discriminator as a function of limiting level

when there is no input carrier (p = 0).

for all practical purposes, it is possible to get around the convergence difficulty by

interpolation. To do so we first calculate data for TF0(/) in the interval 0.01 < r0 < 0.3,

which can be done precisely. Next, we observe that for values of r0 ^ 2.5 or more the

effect of limiting on the purely noise wave is slight. The probability that noise peaks

2.5 times in excess of the r-m-s value will occur is proportional to exp (—rjJ) = e-8 =

0.002, or about 0.2 per cent of the time—a negligible effect. The resulting spread in

the noise spectrum due to clipping is correspondingly trivial (cf. [8]). Accordingly, we

may safely use the values of the spectral intensity, when r0 —>°° [1, Eq. (3.7), when

r0 > 2.5] leaving an interval of about one cycle over which to make the interpolation.

Because we wish eventually to be able to normalize the spectra so that the maximum

intensity is unity, and since TF0(/)mai occurs at zero frequency when there is no carrier,

we need make only one interpolation, i.e. for TT0(0) over the range 0.3 < r0 < 3.0.
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From this data (correct to within two per cent) we normalize the spectrum at the calcu-

lated points, obtaining the curves of Fig. 6. A short table of normalization factors N is

given below:

Table I.

To

.01

.03

.05

.06

.07

.08

.09

N*

2.644• 10-i

2.47 ■ 10~3

7.02 "
1.12 10-*
1.70 "
2.51 "

3.48 "

r0

0.1
0.2
0.3
0.4
0.5
0.6
0.7

N

4.7810-

0.176

0.257
0.303
0.332
0.350
0.362

r0

0.8
0.9
1.0
1.5
2.0
3.0

N

0.370
0.375
0.379
0.382
0.386
0.389
0.3963

(*The values in bold face type are precise; N is the number by which Wo(f)noim. must be multiplied

to give TFo(/)abaolute.)

The limiting behavior of the spectrum at large frequencies is of considerable interest.

It is possible to obtain at least the leading term in the asymptotic expansion quite

simply by the technique of Appendix I (cf. Eqs. (A1.16)-(A1.18)). We begin first with

the simple case of super-clipping, in which we have to examine the series (3.8) of [1].

We transform the series as follows:

V1 exP [—^2/2(m + 1)] _ -A 2 /9n* J_  1 

(m + 1)3/2 h C ' ' k\ h (m + l)'+3/2

(A2.3)

= E f(3/2 + k)(-tf/2f/k\,

where £ is Riemann's Zeta-function.* Next, we use a contour integral (cf. (A1.5)) in-

volving the Gamma-function to represent the transformed series, viz:

i {■(3/2 + k)(-tf/2)k/k! = ± r £(3/2 + s)r(-s)(02/2)* ds m I, , (A2A)
k = 0 ATM J-mi

the contour extending along the imaginary axis and including the pole at s = 0. Shifting

the origin to the left [R(s) < 0] so as to include the single, simple pole of the ^-function,

here at s = —1/2, we easily show by Cauchy's theorem that

h = (Residue at s = —^) + [ £(3/2 + s)T(-s) • {tf/2)',
\ 2/ 2* (A25)

(c > 1/2),

since the contribution of the integrand along the infinite arcs (± <» i to ± <» i — c) van-

ishes.** Equation (A2.5) then allows us to write,

*Whittaker and Watson, ibid,., Ch. XIII.

**For we note that

| r(— s)(Q2/2)'£(3/2 + s) I exp (-x | v J/2) • | v |_1
as v—>± °°, where s = u + iv, independently of the value of c.
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at least for the leading term as fi = <», ^ (2ir)1/2/Q, a result also obtained by Rice

[9] and Blachman [3]; (see also Appendix V of [1] for the other terms).

The case of no limiting (r0 —»°°) may be handled in the same way. The contour

integral representation of the series (3.7) of [1] is now

^ (1/2)^ exp ^ n2/(2m + 2)]
(m!) (m + 1)

" ; C -1-"/» + 2» £■ <A2*>

" r(1/2-7r(«(++i)'(fi 1)" exp [" a'/<2s + 2)1 h (A2'7>

where we have used the relation sin irz = x/r(z)r(l — 2) to transform the cosine term

in (A2.6). The integral (A2.7) is convergent for all values of s = u + iv whose real

parts are finite, for by (A1.6) we have

lim
I v\-*CO

r(-s)r(s + 1/2) exp [~nV(2s + 2)]
r(i/2 - s)r(s + i)(a + i)3/2

1
V 15/2

The leading term is then found as in (A2.5) from the pole at s = —1/2, so that

K .5 "/2'"(X + ir + 2)1 *■2" <A2-8)

The rapid falling-off of the spectral intensity as Q when there is no limiting is

attributable to the equally rapid decay exp ( —Q2)] of the spectral intensity of the

wave entering the discriminator. Roughly speaking, the number of beat-frequencies,

and hence the spectral density, produced in the discriminator for very large 0 decreases

in the same way as the original spectral intensity.
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