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STUDY OF THE BOUNDARY LAYER AT SUPERSONIC SPEEDS IN TURBULENT

FLOW: CASE OF FLOW ALONG A FLAT PLATE*

BY

CARLO FERRARI

Cornell Aeronautical Laboratory

INTRODUCTION

The flow of a gaseous fluid past a rigid, smooth half-plane, parallel to the asymptotic

velocity of the stream, is studied. The edge of the half-plane (leading edge) is assumed

to be orthogonal to the stream, and, in addition, it is assumed that the flow is every-

where "turbulent". The motion within the boundary layer is investigated in an attempt

to clarify many of the assumed and conjectured facts relating to the turbulent layer

within a supersonic stream. For instance, it is found for supersonic flow, within the

range of Mach numbers examined, that a drag law holds which is formally identical

with the one which is true for incompressible fluids, and, moreover, that the thickness

of the boundary layer also obeys a law which is formally analogous to the one describing

the growth of the layer in the incompressible fluid case. In addition, such relationships

as those concerned with the velocity and temperature distributions within the layer,

and the transfer of heat from the stream to the constraining plate at various Reynolds

and Mach numbers are deduced from clearly set forth premises. Analogies and extensions

are presented for full understanding of the phenomena described.

In presenting the results of this study of the motion within the turbulent layer it

is found necessary to obtain the solution as an asymptotic one, i.e., one which is rigorously

valid at a sufficient distance from the leading edge. The formulas obtained contain a

parameter, the determination of which must be left to experiment. A plausible value of

it, based upon the results obtained by Frossel1 from his investigation on sub- and super-

sonic streams in pipes, will be given.

GENERAL EQUATIONS

1. Symbols. Bars and primes will be used to denote, respectively, the mean values

of the following quantities, and their fluctuations about their mean values due to

turbulence :i — enthalpy; i0 = enthalpy of the external stream at zero speed; i„ = enthalpy

in contact with the wall; ia = enthalpy of the external undisturbed stream.

In the next set of symbols, the subscripts 0, p, a, and the bars and primes give the

quantities the same meanings as those specified above for the enthalpy: T = absolute

temperature; U = component of the velocity along the x-axis; V = component of the

*Received Dec. 20, 1948. Italian manuscript submitted to Cornell Aeronautical Laboratory July

22, 1948. This work was carried out under Navy BuOrd sponsorship.

'W. Frossel, Stromung in glatten geraden Rohren mit Ueber- und Unterschallgeschwindigkeit, Forsch.

auf dem Geb. des Ing.-Wesens 7, 75-85 (1936).
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velocity along the y-axis; W = (U2 + V2)1/2; p = density of the fluid; p = viscosity

coefficient; v = kinematic viscosity.

In addition, the following symbols are used: p = pressure; r = tangential friction

stress; t„ = tangential friction stress at the wall; U* = Jriction velocity [£7* = (rp/pI,)I/2];

Vi =_limit velocity of the undisturbed stream; ua = UJVt ; / = U/U*; fa = UJU*\

a = TJ/Ua — f/fa ; u* = U*/Ve ; Ma = Mach number of the undisturbed stream;

7 = T0/Tp ; S = thickness of the boundary layer; t = time; cr = coefficient of local

friction drag (cr = 2tp/p„UI); Cr = coefficient of total friction drag for a plate of length

x] q = amount of heat transferred through the plate from the fluid, per unit length of

wall.

The meaning of other symbols used in this paper will be given as they appear in

the text.

2. Equations of motion and of continuity. In the region outside the laminar sublayer

one may neglect the transport of momentum due to thermic molecular vibration in

comparison with that due to turbulence. Let the x-axis coincide with the line of inter-

section of the rigid plate with the plane on which the motion is being studied. Then

one may write:

(1)

Let p = p-\-p',p = ~p + p',U = U + U', and V = V + V'. Then at a sufficiently
large distance from the leading edge of the plate it is true, in all likelihood, that ~p — ~p{y),

U = U{y) and V = 0. Therefore, if one neglects, as is usually done, pV2 in comparison

with pUV, it is found that

pUV = pU'V' + Up'V + p'U'V' = t = const. = t„ ,

(2)
p = const. = pa .

It certainly seems allowable to admit that p'U'V' may be neglected in comparison

with the other terms; then one can substitute the simplification

pU'V' + Up'V' = rp (2')

for the first of Eqs. (2).
From the equation of continuity,

If + lw,> + |,(pF,-0' (3)
the following relation may be established:

p'v' = cpvU*, (30

where c is a parameter, related to the Mach number and concerning which we know

solely that

lim c = 0 as M. —> 0. (3")
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3. Energy equation. If in addition to neglecting p U V one neglects, as in Sec. 2, the

viscosity and the molecular conductivity in the region outside of the laminar sublayer,

one easily may find that

dT
dt ' dt \p) p \dt ' w dx ' dy.

where c, denotes the specific heat at constant volume. From this equation we obtain

pl(i + ±w*) = dP
p dt V + 2 / dt

But

p dt
(•'+1 "*) - i [-4'+1ff!)] + i [>4+1w')

+1 w)+ h
and, therefore, at a sufficiently large distance from the leading edge, one has

pVij, + W2) = ~ pV'(i + hW2Y + (i + hU2)P'V' = const. = a~PvU*\ (4')

4. Explicit form of the terms defining the turbulent transport of momentum and

energy. In order to describe the terms which define the turbulent transport of momentum

and energy as functions of the geometric and kinetic characteristics of the average

motion, we may go back to the well-known considerations which permit the establish-

ment of the following expressions for these terms:2

u'v'= 1 % (F'2)1/2' F'0 +1v/2)'= k ij (*' +1 rfwy2' ©

where I and h are lengths which are likely to be related to the scale of turbulence. It

appears plausible to put I — li . In fact if

i -f \U2 = const. (6)

(the flow is everywhere isoenergetic), the correlation between V and (i + IF2/2)' may

be assumed equal to zero, and therefore V'(i + W2/2)' = 0. On the other hand the

following relations hold:

V (i + W ) = V i + \V W = V i + \V\2UU' + U'2 + F'2)

di / xr'2\ 1/2 t ttj/ tt/2n 1/2 dU= ~ V'i' + U V'U' = Z2 g (F'2)1/2 + UV7'*)in ^ (6')

2G. I. Taylor, The transport of vorticity and heat through fluids in turbulent motion, Proc. Roy. Soc.

London (A) 135, 685-705 (1932).
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where the meaning of the symbols is obvious. Now, in order that Eq^(6') be a necessary-

consequence of Eq. (6), whatever the particular variation of i and U in the region may

be, it suffices that Z2 = I everywhere, and therefore also that li = I.

VELOCITY AND TEMPERATURE WITHIN THE BOUNDARY LAYER

5. Law of variation of temperature within the boundary layer. Taking into account

Eq. (3') and Eq. (5), Eqs. (2') and (4') become

pZ ̂  (01/a + CP*U* u = P,U*\

(7)

pZ jy(i + | f/2)(Ol/2 + (i + \ U2)cpJJ* = apvU*3.

One obtains from them that

i + W1 = I + BU, (8)

where iv is the enthalpy at the wall, while B is related to the parameters a and c through

the equation

B + cjp - aU* = 0. (9)

Now, at the edge of the boundary layer, where i = ia , U = U„ , one must have ia +

Ul/2 = iv + BUa . It follows immediately that

Ua/2 %jp   io ijp   ip i ^ "J)
ua ua ua

(10)
7 —lu[i + 1 1

\_2 ̂  (Jfe - \)MU'

where k is the adiabatic exponent and y = T0/ Tp . The law of variation of temperature

in the inside of the boundary layer is therefore obtained as

ZL _ I _ Ml (fc ~ 1 Wl , 7 ~ 1 f 1 , 1
To ~ 7 ul 2 + (Jo - 1 )Ml + 7 L2 + (k - l)MU

_ 1 U_ [y - 1 _ (k - 1 )M2a U I

~ y + UaL 7 2 + (fc - I)Ml Uaj-

U_ 2(fc - 1 )M'a

Ua 2 + (fc - 1 )Ml

(11)

This relation is identical with that defining the law of variation of T within the boundary

layer in the case of laminar flow when the Prandtl number is equal to unity3, Pr = 1.

6. Law of variation of velocity within the boundary layer.

6.1. Integration of the equation of motion. In order to carry on this discussion further

the quantity 1{V'2)1/2, denoting the so-called coefficient of turbulent transport, must

3Th. v. Karman and H. S. Tsieu, Boundary layer in compressible fluids, J. Aero. Sci. 5, 228 (1938).
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be given an explicit form. Now the same formulation will be assumed for this coefficient

that is commonly accepted in the case of incompressible fluid flow (one might repeat

here the reasons which justify it).4

Let, therefore,

l{V~yn = U*y<f(f, /', • • •) = U*y(ao + «,/ + a2f> +•••), (12)

where / = U/U* while f = df/dy and a0 , «i , ■ are a priori unknown functions

of r] — y/S, if 5 is the thickness of the boundary layer.

Accepting the same degree of approximation as in the case of incompressible fluids,

let

KOV2 = U*ya0 , (12')

where a0 is a constant. Hence

l(Vy/2 ^ = U*\f'aQ . (13)

Now, since it is true that

P Tv I T _ 1 g Ul io , £_ (io _ Xl'1
2 ul in 7 r/„ \7 /JT iv - U2/2 + BU

1

«oi7 /' + cf 1 - yu*2f + 7 (t - 1)
J a

= 1 - yu*2f + (7 - 1).
J a

By separation of variables one obtains

 «o df  _ dy

[1 - yu*2f2 + (t - 1)///J(1 - cf) 17

Let

/. = -

(14)

1 — Uay<r2 + (t — l)c '

the first of Eqs. (7) becomes

{pPU*2/[l - ulya2 + (7 - l)<r]}«ovf + cpPU*°f = P.U*2 (15)

or also

(16)

(17)

where one employs either the upper or the lower sign before the radical according to

whether y > 1 or 7 < 1. Then we have

4G. Moretti, La teoria del trasporto turbolento, L'Aerotecnica 27, 44-50 (1947), and Considerazioni

sullo studio della turbolenza nei tubi e nei canali, L'Aerotecnica 27, 404-410 (1947); or C. Ferrari, Lo stato

attuale della teoria della turbolenza, Lectures on Phys. and Math, in Univ. of Torino, 1936, p. 223.
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1 1

[1 - yu*2f2 + (7 - 1)///«](! - cf) (/, - y1/2u*f)(y1/2u*f + /,)(! - cf)

, &2  i ^3

_ 1 /2„, a|e J? | Xfx - yw2u*f ^ y1/2u*f + f* 1-cf

where

«0

7"V 71/2W*

fll (/. + f^)(yW2u* - c/0 ' °2 (/, + f2)(yl/2u* + c/0 '

„ =c!  (18)
fl3 (y1/2u* + cf2)(y1/2u* - c/0 '

One should observe that within the boundary layer ///„ < 1, while fi/fay1/2u* > 1,

—fi!fayl/2u* < 0, for any value of y whatever; thus the following inequalities certainly

hold: —fi/fayl/2u* < f/fa < fi/fay1/2u*. One has, besides, that ///„ ^ 1 /cfa ; and this

relation, which may now be accepted as a restriction which the constant c must satisfy,

will be justified later in Sec. 10.2.

Thus it appears that the function of / appearing in the first member of Eq. (16) has

no singularities within the layer. By integrating Eq. (16) one obtains the equation

[- log (/x ~ yW2u*f) + ^ log (71/2u*f + f2) - f log (1 - c/)]

(19)
= log v + log A,

where log A denotes a suitable constant of integration.

6.2. Determination of the constant of integration. Equation (19) describes the law of

variation of the mean velocity in the inside of the turbulent boundary layer, and, there-

fore, for all values- of / included within the interval, /.</</«, where f, denotes the

value of / at the boundary of the so-called laminar sublayer.5 For values of f close to

/,, for which one has y1/2u*f <JC/i and y1/2u*f «/2, it is permissible to put

log (/i - y1/2u* f) = log ft - y1/2u* j , log (yl/2u*f + f2) ^ log f2 + 71/2m* j- ,
J1 J 2

log (1 - cf) = -cf.

Taking into account Eqs. (18), one may put Eq. (19) in the form

Oo

c
[ - ("^T U* + /2)(log fi - yW2U* + (^-U* ~ /i)(log fi + 7U2U* jr)

- (/i + /a)c/J = (fi + fi)(^Tu* + f2)(c~c~u* ~ /i)(loS 1'+ loS A)-

(19')

At the boundary of the sublayer, the thickness of which will be denoted by y, , one has,

therefore,

6Th. v. Karman, Turbulence and skin friction, J. Aero. Sci. 1, 1-20 (1934).



1950] BOUNDARY LAYER AT SUPERSONIC SPEEDS 39

^ I? u** + t Uu* &-TT*1 ~ c(/i + /.)
>■c Lc /i/2 /i/2

+ a [_(^ + A)v,/l + (y-tf-/,)„,*]

= (/. + /2)(t1/2 y + /2)(t1/2 f - /i)(log ^ + log 4).

And as /i/2 = 1, there is obtained also:

«o(/i + /2)^m*2 + ^ w*(/i - /2) - lj/.

= (/, + /2)(t,/2 y + /2)(t1/2 y - /i)(log & + log a)

= (/. + /2)[j M*2 + 71/2 y (/, - /,) - 1 (log & + log a),

whence

'■ - i (to« *i +lo^) -! Try, [ ■~(T'" ui +'')los '■+ ( 1/2 u*
7 T

- /1 log /2 -^«-i;(l0g!! + 1OBA) <20)
(t"V/c + «(r"V/c - /,)

1 ( 1 , , , 1 , 2/.C/*
c(/i + /2) V yW2u*/c - fx l0g U + y1/2u*/c + /, g /a/ ~ '

where it is assumed, as is done by Karman6, that within the sublayer the velocity is a

linear function of y. Thus the following equation may be derived:

W A -  ino- — -I- /v y'U* 4- "Q (_ lQg /■ , log f* \ ,ou
lO§ Jx "T" QIq ~T~ / r r \ I * / -C l~ 1/2 * / 1 r I • \^"/

^ vv CUi + /a) \ 7 ^*/C - /1 7 + /2/

When Eq. (21) is inserted into Eq. (19), we find the relation

c [ (/, + f2)(y1/2u*/c - /0 log (! 7'/V fj

+ (A + iiXV'V/c + f2)log (* + t1/2m+ /2) (22)

+ (</'V/c + A)W/e - /0 ^ (1 " C/)J = bg ** + B
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where

y* = yHl and B = ao u-Ml with = & . (22')
V„ vv pv

It is assumed here, as in the study of incompressible fluid flow, that a0 and y,U*/vB are

universal constants, which are independent, in particular, of the value of y. It should

be observed that for 7 = 1 one has /, = f2 = 1. Thus Eq. (19') leads, for the value of

log A given by Eq. (21), to the following fact:

f = - (logy* + B). (19")

This relation is identical with that holding for incompressible fluid flows. This must

be true not only because the equations established in the case of incompressibility must

be deducible as a particular case from those which are true for gases, but also because

for 7 = 1, in proximity to the walls, the effect of compressibility is negligible.

Thus it seems allowable to assume in every case, for a0 as well as for B, the values

obtained from experiment for p = const.

DRAG LAW AND LAW OF VARIATION OF THE THICKNESS OF

THE BOUNDARY LAYER

7. Dependence of the local drag coefficient upon the local Reynolds number.

Equation (22) gives, as already said, the law of variation of the velocity outside of and

on the boundary of the laminar sublayer, i.e., for y > y, . By following a procedure

identical with that used by Prandtl6 it is, however, possible to extend the applicability

of this law right up to the wall and thus evaluate the coefficient of local resistance,

cr = 2Tv/paUl . To this purpose, a transformation of coordinates is performed such that

for y* = 0, / = 0. One need only substitute log (1 + by*) for log y* + B. When this is

done, it may easily be verified that for suitable values of b and for y* sufficiently large

the new expression is practically coincident with the old one, and that the new expression

vanishes for y* — 0. Equation (22) thus becomes

«o

c (/. + MyU2u*/c - fO log i1 yU*u* i

+ (/1 + f,)(y1/2u*/c + /2)log I1 + yW*u* f) (22'}

+ (t"V/c + - fO bg (1 ~ c/)] = l0g (1 + hy*)~

6L. Prandtl, "The mechanics of viscous fluids," Aerodynamic Theory, ed. by W. F. Durand, vol. 3

Julius Springer, Berlin, 1934, p. 145.
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Equation (22') may be used in order to express the coefficient cr in terms of the Reynolds

number, Rx = TJax/vv , by means of

r»= fx £ ^dy• (23)

The method explained hereafter is similar to that used by Prandtl.6 Remembering that

= -pMfl), dy = (vJU*) dy* and putting 5* = U*8/v„ , we find from Eq. (23) that

* I = i fIf(1 - «> ~ do-. (23')

.Now from Eq. (22') one obtains

a - y1/2u*f/fj
1 + by* =

( 1 ~cf )

VI - yU2U*f/fJ

(24)
ao/c (7 1/au*/c+/2) ( Y1/au*/c — /i)

X

where

/* = fi + U • (25)
Let

c = p y; = p | , (26)

where /3 is a numerical parameter, a priori unknown. It should be noted that the re-

lationship (26) represents merely a heuristic hypothesis, which is the most simple repre-

sentation that may be formulated in connection with condition (3'); but nothing justifies

a priori the assumption made in this paper of regarding /3 as constant. Equation (24)

can be written in the form

1 + by* =
1 + yU2<rua/ f2

1 - yl/2oUa/ fi

■ •/./WHr'/'+s/,)

X
( 1 — fiua<r \

Vl - 7l7W/J

(24')
a ePfa/Ua ( y '/» +/S/i) ( y ■ /»-0/, )

By differentiating Eq. (22') one obtains

b dy* _ ao [" 1

1 + by* ~ c L/*(7l/2u*t

1/2 * 1 1/2 *y u* 1  7 u*

/C - /i) /i - y1/2u*f ^ f*(yW2u*/c + U) yl/2u*f + f2

(yl/2u*/c + f2)(y1/2u*/c - /0 1 - c/]

fflo d/ 

C/i - y1/2u*f)(y1/2u*f + /2)(1 - c/)

 «o/.  .

[1 — yu2aa2 + (7 — l)o-](l — fiuacr) '
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so that taking Eq. (24') into account, it is found that

dy* = aOr  1 

da b ° [1 — yu2a<72 + (7 — l)o-](l — 16uatr)

(27)
v (1 + v/w/.Y,/V 1 - \",m
X ll - 7"W/J Vl - y1/2oua/fJ '

in which

= a0/f*ua(y1/2 + /3/2), «a = <XoP/ua(y1/2 + Pf2)(y1/2 - 0/,). (28)

By inserting into Eq. (23') the expression for p/p„ given by Eq. (14), one obtains

Ug fflQ (j

vjl b dx
f2 [' ff(l ~ Q-)  1

Jo [1 — uay<r2 + (y — l)cr]2 (1 — fiua<r■)

X|i + v;w.M"'Y, i
J — 7 tTUa/fJ Vl — 7 0"Uo/ /l

By differentiation it is found that

(29)

Ua   &0 d f a

Vpfl b dx
, f1 <r(l ~ *) A + yU2<rua/f2Y'f-

"J o [1 — u2ay<r2 + (7 — l)cr]2(l — (3m0ct) \1 — 71/2<rua/fJ

x (, '"i"w,-)"T2 + '■*!+\1 — 7 auJJJ L 1-7 OUa/fl

1 r i 1 fiUa(T I , «o /• / /• \
+ /a log j _ y/^z/J ~ b fa dx

(29')

whence

where

= «a f^o(fd dfa = ^ ¥,3(/a) d/o ; (30)

** = flvo ■ (30')

Finally, by integrating Eq. (30), it evolves that

r*=? C M) dfa=°bx{fa)• (3i)

Observe now that

f _ El- Ua _ (2£p\1/2 _ r9 n
fa U* ~ (tp/Pd)1/2 \CrpJ [ 7(1 M")/Crl

& = (^Y+n = JL 1
i. W 7l+" (1 - m')"+1 '

(32)
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and let Rx = Uax/va . Then we find that

<33)

which, in conjunction with the first of Eqs. (32) and Eq. (31), establishes the relationship

being sought between the Reynolds number of the undisturbed stream and the coefficient

of local friction.

8. Relationship between the coefficient of total friction and the Reynolds number.

The total friction drag for a length x of the flat surface, is given by

Fa = f rp dx = f ~PVU*2 dx = p, f' "I fa<Po{fa) dfa
J0 •> 0 Jo Ja u„ 0U Ua

= J M) df. = n,ua f *(/„),

(34)

where

<P1 = fa<Po and \p = [ dfa . (34')
Jo

Consequently, one deduces that

Cr = -Mf- = -M*- = 2 ̂  (35)
P„Ulx nvUaRx x(/»)

or also that

cr = = * Cr = 7(1 - Ua)C, = 2t(1 - u!) * . (35')
Pa U a% Pa ^

9. Law of variation of the thickness of the boundary layer. From Eq. (22'), keeping

in mind Eq. (26), one obtains for y = d,

«°[- -f* uw _ los (x - y1/2u* f) + y72 + pf,log (x + 7'/v f)

+ u*(y1/2 + /3/2)[(71/2/|S) - /J l0g (1 ~ /3U*fa).

= log(l + b^) = log(l+f-Rs),

where we have set Rs = SUa/vv . It is thus found that

l + jRs = (\+yl^///flf'L 1 1/^°/ J"'', (36)
fa \1 — 7 Ua/ fj \1 — 7 Ua/ f J

and as, in addition, one has

"■■f'-ftT:■ <36')
V- 7 (1 — Ua)
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Eqs. (36) and (36') give the parametric representation of the line constituting the edge

of the boundary layer.

10. Explicit formulation of the drag law and of the law of variation of the thickness of

the boundary layer.

10.1. Numerical results. In order to be able to give an explicit formulation of the

drag law, one must, first of all, evaluate the integral defining the function <?(/„).

Table I.

Ma — 1.5 ua = 0.5571 0 = 0.1

fa Cr <P0 *P\ dRx/dCr

7.744 0.02300 7.83 60.64 - 5.274X104
10.81 0.01181 26.37 285.0 -13.07X105

13.87 0.007168 92.37 1281.0 - 2.055X107
16.94 0.004809 332.1 5624.0 - 2.446X108
20.00 0.003448 1216.0 24320.0 - 2.424X109

23.06 0.002593 4514.0 104100.0 - 2.539X1010

Ma = 1.5 «„ = 0.55708 0 = 0.25

fa Cr <P0 tP\ dRx/dCr

16.52 0.005055 380.5 6285.0 - 2.413X108
20.00 0.003448 1887.0 37740.0 - 3.762X109
23.48 0.00250 9501.0 223110.0 - 4.973X1010

Ma = 1.5 Ua = 0.55708 0 = -1

fa Cr <Pc <Pl dRz/dCr

20.00 0.003448 140.0 2801.0 - 2.798X108

Ma = 1.5 Ua = 0 55708 0=0

fa Cr <P0 *Pl dRx/dCr
20.00 0.003448 934.0 18680.0 -18.620 X108

Ma = 2 Ua = 0.66667 0 = 0.1

fa Cr tpi dRx/dCr

16.33 0.004165 499.2 8154.0 - 5.343X108

20.00 0.002778 2681.0 53620.0 - 9.672X109
23.67 0.001984 14710.0 348100.0 - 1.457X1011

Ma — 2 Ua = 0.66667 0 = 0.25

fa Cr <Po tpi dRx/dCr

15.83 0.004432 844.0 13360.0 - 7.496X108
20.00 0.002773 6960.0 139200.0 -25.11 X109
24.17 0.001902 59450.0 1437000.0 - 6.667X1011

Ma = 2 ua = 0.66667 0 = 0

fa Cr *P0 tPl dRx I dCr

20.00 0.002773 1875.0 37500.0 - 6.765X109

Since it appears impossible to work out a closed-form expression suitable for the numerical

computation of this integral, the following procedure has been followed, which permits

the establishment, at least qualitatively, of the drag law and of the law of variation of

the thickness of the boundary layer. Their quantitative determination will be made

possible only after experimentation is undertaken to arrive at the value of the parameter

/3 introduced above. In order to obtain a rough estimate of such a value /3, reference is

here made to the above-mentioned experimental results given by Frossel which deal,
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however, with friction along tubes rather than along plates. The simple case of a

thermally insulated wall, y = 1, is now considered. The function <p0 then takes the form

Po
f1 <r(l — <r) /l + UgQ-V'f'/1 — (3uao\ •

J0 (1 — Ua<r)( 1 — /3w„cr)\1 — Ua<rJ V 1 — Uao /

^ , Tn i r l 1- I i x i 1 fiUa(Tx L2 + los l0«

(29")

The values of this function, for different values of /3 and of fa corresponding to

Ma = 1.5 and Ma = 2, have been calculated numerically as shown in the Appendix.

The results obtained are summarized in Table I, where the values of dRx/dcr calculated

Table II.

Ma = 1.5 0 = 0.1

{fir) 112 Cr5'2 dRx/d,C, Cr5l2(dRx/dCr)i

6.594 4.231 3.989
9.202 19.81 19.91

11.81 89.39 94.14
14.42 392.30 397.00
17.03 1692.00 1950.00
19.64 7262.00 8694.00

Ma =1.5 0 = 0.25

(Cr)~1/2 Cr6'2 dRx/dCr Cr6'2 (dRx/dcr)i

14.06 438.4 352.8
17.03 2627.0 1950.0
19.99 15560.0 10852.0

Ma =2 0 = 0.1

{fir) 1/2 cr5'2 dRx/dCr cr6l2{dRx/dcr)i

15.51 594.8 804.8
18.97 3933.0 • 6030.0
22.45 25536.0 44337.0

Ma =2 0 = 0.25

(cr) 1/2 cr6'2 dRx/dcr cril2{dRx/dcr) i

15.02 980.3 615.4
18.97 10210.0 6030.0
22.92 105400.0 58490.0

Ma = 1.5 0 = -1

(cr)-!'2 Cr6'2 dRx/dc,

17.03 195.4

0 = 0

17.03 1300.0

Ma = 2 0 = 0

(c,)"1'2 cr«2 dRx/dCr

18.97 2751.0

with Eq. (30), are also given. These values have been evaluated by taking into account

the second of Eqs. (32) and by assuming for a0 and for b the values 0.4 and 8.93, re-

spectively (these values are very close to those determined by Prandtl6 in his investiga-

tion).
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On the basis of the above-tabulated data, the values of (cr)~"1/2 and of c/2{dRx/dcr)

have been calculated. They are given in Table II where, in addition, the values of

cV\dRJdcr) for the same values of cr , but for an incompressible fluid, are also given.

These quantities have been calculated by means of the following equation,

'Hf), - -1r [»»^ «*>
which can be obtained as a limiting case from Eq. (30). It is also possible to deduce it

from the formulas given by Prandtl.6

The values of (cr)~1/2 and of c5/2 | dRx/dcr | tabulated above, are plotted on semi-

logarithmic_scales in Fig. 1. It may be noticed at once not only that such a diagram

[log (c/2 | dRJdcr |); c7'/2], referring to an incompressible fluid, approaches very closely a

straight line within a very large interval, but also that the same situation holds with

still higher approximation for the diagrams referring to a compressible fluid, and

equally well for Ma =1.5 and Ma = 2 as for (3 = 0.1 and /3 — 0.25.

Therefore, it seems allowable in all cases to substitute for Eq. (30) the Eq. (38)

which follows. This equation holds at least for values of the Mach number not differing

considerably from those given above:

(el- | |) + B. (38)Cr = A lOg

Note here that A and B are parameters which eventually become functions of the

Mach number only. From the diagrams in Fig. 1, we infer, by setting A' — (log10 e)A =

0.43429 A, that

Ma = 1.5 p = 0.1 A' = 4.1 B — 3.8 A = 1.781
= 0.25 = 3.85 = 3.8 = 1.671

Ma = 2 /3 = 0.1 A' — 4.25 B = 3.7 A - 1.846' = 0.25 = 3.91 = 3.27 = 1.698

For an incompressible fluid, in the interval corresponding to the highest values of

(cry1/2, one finds A' = 4.075; B = 3.625; A = 1.7697.

10.2. Drag law. From Eq. (38) the drag law may be derived at once. In fact, let

A log S0 = B, then Eq. (38) may be written in the form

Cr1/2 = A log

whence

B0cV2

or

(Bocj7
dRz

dcr
(38')

dRx

dcr
= exp (1 / Acr )

R, = - ± £ exp (l/Ac1/2) = exp (1/Ac1/2)(1 - 2Ac1/2 4- 2A2cr) - ~ ;
dcr 2A /* ! A l/2\/-f n A .1/2 , o A 2. \ 4 A

also, for Rx sufficiently large and hence for cr small enough,

cr 1/2 = ~ A log (Rxcr) + A log ■ (39)
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Therefore it may be stated that: for supersonic fluid flow, at least for Mach numbers

not too different from those here considered, a law of resistance holds which is formally

identical with that valid for incompressible fluids (logarithmic law of Karman). It

follows, consequently, that the relationship between the total and the local friction

coefficients is the same as that given by Karman for incompressible fluids, i.e.,

CT = Cr( 1 + 2 Ac1/2). (390

A quantitative determination requires the knowledge of the values of A and of B0 ,

i.e., of /3. Now the experimental results obtained by Frossel concerning fluid flow through

pipes, while confirming that the logarithmic drag law holds also at supersonic speeds,

give, moreover, exactly the same values of A and B0 for Mach numbers larger than

unity as for the case of incompressible fluids. Assuming this result to be true also for

the fluid flow past a flat plate, one may carry out the determination of the parameter

/S from the data given in Fig. 1, where the results obtained for a given value of cr for

/3 = 0 and /3 = — 1, are also plotted. It follows that the value of 13 for any Mach number,

at least for those not very different from those considered above, must lie between 0.1

and 0.25. A further rough estimate of /3 will now be obtained by imposing the condition

that the various curves, related to different Ma , pass through the same point of the

[log (c\V2 | dRx/dcr |); c71/2] plane and by supposing it to be permissible to interpolate,

Fig. 1. Mach number influence in shifting the semi-logarithmic plots connecting the drag coefficient and

Reynolds number.

for the values of /3 within the given interval, between the values obtained for (3 = 0.1

and |3 = 0.25.



48 CARLO FERRARI [Vol. VIII, No. 1

Thus, by insisting that, for Ma = 1.5 and c~Ui = 17.0286 (corresponding to/„ = 20),

the curve go through the point which is the ordinate of the curve representing the case

of an incompressible fluid, one obtains by interpolation between the values given in

Table II that /3 = 0.14. Analogously, by imposing the condition that for c71/2 = 18.973

(corresponding to the same value /„ = 20), the curve related to Ma = 2 should pass

through the point of the curve representing the case of Ma = 0 which corresponds to

the above ordinate, one obtains by interpolation between the values tabulated in Table

II that/3 = 0.15.
Figure 2_presents the graphs describing the law of variation of c71/2 in terms of the

log (cj/2 | dRx/dcr |) for the Mach numbers Ma = 1.5 and Ma = 2 and for the value of

|0 = 0.145. They have been obtained by linear interpolation of the values corresponding,

for the above Mach numbers, to (3 = 0.1 and (i = 0.25 respectively.

de.

Fig. 2. Law of variation of (cr)_1/2 in terms of log (c,6'2 | dRx/dcr \) for the Mach numbers Ma — 1.5

and Ma = 2 and for the value of 0 = 0.145.

It may easily be verified that:

1. The diagrams are really very close together and also close to the graph representing

the case of an incompressible fluid flow (the points of which are denoted on Fig. 2

by crosses).

2. The drag coefficient decreases with increasing Mach number. This decrease may

scarcely be perceived, however, on the semilogarithmic scales, for values of the

Mach number varying between 1.5 and 2.

Therefore, the assumption that the value of (3 depends only in very slight measure

on the Mach number seems to be plausible. This justifies the procedure followed here



1950] BOUNDARY LAYER AT SUPERSONIC SPEEDS 49

and warrants the use of expression (26) as well. It should be noted, however, that this

property is a consequence of the assumption made as to the validity of the experimental

data given by Frossel and their extensibility to the case of a flat plate; obviously,

therefore, it deserves confirmation.*

10.3. Law of variation of the thickness of the boundary layer. For the purpose of es-

tablishing an explicit relationship interconnecting the thickness of the boundary layer,

the coefficient of local resistance, and the corresponding local Reynolds number, calcula-

tions have been carried out by means of Eq. (36). For the calculations we have used

Ma = 1.5_and the values of fa and of /? already given in Sec. 10.1, which determine the

values of Rs and of Rs c1/2 . The results obtained are summarized in Table III. In this

table, for every cr , the corresponding value of RscY2 in the case of an incompressible

fluid is also given; it has been calculated by means of the equation

91/2

cl/2Rs = (exp M2/cr)1/2 - 1). (40)

Table III.

Ma = 1.5 fl = 0.1

Cr Rs Rs(cr)112 (Rs(Cr)ll2)i

0.02300 59.52 t 9.027 6.472
0.01181 352.9 * 38.35 28.72
0.007168 1893.0 160.30 125.20
0.004809 9625.0 667.50 551.20
0.003448 47290.0 2777.00 2409.00
0.002593 226800.0 11550.0 10600.00

Ma = 1.5 p = 0.25

Cr Rg Rs(cr)112

0.05055 9983.0 709.8
0.003448 70220.0 4124.0
0.002501 478800.0 23950.0

The values of (cr)~1/2 and of cY'2Rs are plotted on the semilogarithmic scale in Fig. 3.

It may easily be seen again that not only in the case of an incompressible fluid, but also,

with the same approximation and for any value of /3, in the case of gaseous flow it is

allowable to take

c71/2 = D log (Rs c1/2) + E, (41)

where D and E denote parameters which are eventually functions of the Mach number

only. From Fig. 3 one has

Ma = 1.5: (3 = 0.1 D' = logI0e D = 4.17 E = 2.65 D = 1.81
= 0.25 = 3.805 = 3.19 = 1.65

Ma = 0: D' = = 4.04 E = 3.39 D = 1.75

*In the light of recent experimental results for a flat plate the theoretical treatment presented here

has been improved by the author. The new analysis confirms that there is very appreciable decrease in

drag coefficient with increase in Mach number, and it is found necessary to select a smaller value of /3,

near zero, for this flow condition, in contrast to what is found for pipes.
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Following a procedure analogous to that indicated by Karman,5 the relation being

sought may be derived from Eq. (41) and Eq. (39). Subtracting Eq. (39) from Eq. (41),

and observing that the values of D and of A are sensibly equal, therefore putting D =

A, one obtains

S = exp j- E A B jxc'/2, (42)

where B' = A log (Ba/2A). Hence, the law of variation of the thickness of the boundary

layer is also formally analogous to that holding for incompressible fluids. As far as the

{c~r Rj

Fig. 3. Boundary layer thickness in relation to drag coefficient

quantitative determination is concerned, it is interesting to see what results correspond

to the above values of A, B, E in both cases, i.e., for 0 = 0.1 and /3 = 0.25 as well as

for Ma =1.5 and Ma = 0 (incompressible fluid). One has

Ma = 0, B' = 1.388, exp j- E ~ g'j = 0.3226, whence h = 0.3226zc'/2;

Ma = 1.5, 0 = 0.1, B' = 1.539,

exp S — E ^ \ = 0.5354, whence 5 = 0.5354xc1/2;
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Ma = 1.5, j3 = 0.25, B' = 1.784,

exp j — ̂  ^ ^ | = 0.431, whence 5 = 0.431xc]/2.

These results show that when 0 lies between 0.1 and 0.25, the thickness of the boundary-

layer grows more rapidly than in the case of incompressible fluid flow. Assuming as a

probable value of P the previously given one, /3 = 0.14, and admitting that it is per-

missible to interpolate, for /3 lying within the above-mentioned interval, between the

values of 5/xc1/2 that we have found, one deduces the following law of variation of the

thickness of the boundary layer (Ma — 1.5):

5 = 0.5 xc'/2. (43)

Note: The results now attained have been obtained assuming 7=1, but from the quali-

tative point of view they still hold for 7 1. A quantitative determination would require

that the calculations be repeated, retaining for /3 the value now deduced.

10.4. Determination of an asymptotic expression for calculating the function <po (/<.)•

The result obtained in Sec. 10.1 suggests the determination of an asymptotic expression

(holding, that is, at sufficiently large values of /„), for the calculation of the function

<Po(fa). In this way the result is justified analytically, and we get a general expression

which permits us to investigate the influence of the different parameters (Mach number,

ratio of absolute temperatures, 7) on the drag law and on the law of variation of the

thickness of the boundary layer. Such an asymptotic expression may be obtained as

follows.

The integral describing <pa(fa) may be written in the form

<P 0
f1 "•(! ~ ")  L f (n 1 1 + y/2<rujfx

J0 (1 - T1/W/i)2(1 + yW2<rua/f2)2(l - puaa) [f + H"1 '°g 1 - 7"W/.

, 1 — ;8 u„(t fj 1 1 + y1/2cuj f2
+ lQg ! _ 7-W/J, GXP Viai bg 

, 1 — 0Ua(T
+ a2 log 

1 - 71 <suj fx _

Let

1 - y auj f\

da-. (44)

a = 1 — e; (45)

one finds that

log ^1 + y'2 j <r) = log
1 , 1/2 Ua\ ■< 1/2 Ua
1 + 7 TH1-f ~~

1 I , 1/2 | 1/2 Ma-tog^ + 7 jJ-y tT

fjv • u 1 + y'ujfj J

1 ul e2
1/2„, /-f o 7 f2 f\ /s\2fj ' /,1+ 7 "V/2 2 ' f\ (1 + y ua//2)

  1/2 Wj   £ 

fj 7 U 1 + ynujf,
log {1 + 7V2 . ) yn I 1 + 1/2 .. 0,(«), (46)
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where gi(e) is a function of e, which, as e varies within the interval 0 to 1, remains finite,

continuous, and positive, and which is equal to unity for e = 0.

Analogously, one can write

log (l - I .) - lo8 (l - V" f) + I TZ^7Ti »,(.),

log (1 - Pua<j) = log (1 - fhia) + 1 _ 6fif3(«),

(46')

where g2(e) and g3(t) are functions which satisfy the same conditions as does <?,(e). It

is then true that

(47)

/ r i 1 + 7 °ua f2, , i — 0uaa i
exp S /„ a, log   172 TV + 0i2 log   172 ,,

L L 1—7 «„//, 1—7 <rtta//iJ

_ (i + y/2ujf2y>f'( i - pUa y>f° .n,

~ Vl - 7inuJfJ \1 - 71/2uJfJ exp {

where

, / \ _ yU2ua/f2 71/2ua/fj $ua .

~ 1 + y1/2Ua/f2 ̂  + 1 - 7"V/. ^ 1 - 0". ( }

and

«3 = oil + «2 .

Within the range of values of /3 given in Sec. 10.2 and for e varying between 0 and 1,

is always positive.

Furthermore one has

o i j-( i 1 + yU2<rUa/. , 1 — \
2 + /.(a, log x _ yw2aujfi + «2 log 1 _ y^aUjjJ

-2 + 4*log 1 - £v£ +log - ***.•

(t + 71/21 a) = exp {V/211 + 7* V/> €?l(e)}'

(l - 71/21 <r) = fl _ t^Mo//i]2 exP {-2V/2 | 1 - yKjf, efi,2(e)}'

(48)

(1 - M-' = exp <„,(<)

Thus Eq. (44) becomes

 i a + 7i/w/2v,/y i - Pua y°f°
Vo 72(1 — w2)2(l — pua) \1 — y1/2ua/fj \1 — y1/2ua/fj

(44')

X f e(l - e) exp [-«(/„<£ + 0,)] [2 + /„F - /„«/>] cZe,
*'0
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where one has put

, O !/2 U"  ^ „ n I PUa „ / \ O 1/2 ua 1 / \

~ 7 /a- t'V/i ^(e) + i - Pua 9s(e) ~2y jt i + yv/s

(49)
p _ W 1 + 7VV//z , . 1 - &ua
F — al log 1/2 ,, ~T &2 log 1 1/2 / /• •

1-7 ««//l 1—7 Ua/ JI

In order to evaluate the integral in the right-hand member of (44'), the interval 0 to 1

may be divided into two intervals, 0 to 77 and 77 to 1, where

V = UVi. (50)

Let H be the maximum value attained by the expression e(l — e)[2 + faF — /„«/>]

within the interval 77 to 1. It is found that

[ e(l - e)[2 + faF - fae<t>] exp [-e(j> + 0i)] de < H [ exp [—e(fa<j> + &)] de
J 7, J V

(51)

'exp [~(<t>fl/s + <t>j:2/s)] - exp [-(<*>/„ + </>,)]} = 0(exp [-4>fa/3]),
fa<t> + </> 1

which can be neglected for/„ sufficiently large. In the interval 0 < e < 77 let <£ = 4>o +

and <f> 1 = <t> 1,0 + 'AiC- We have then that

exp [-«(/„<£ + <#»i)] = exp [-(j>0 + 0i,o)e] exp [-(/„&, + lW«2].

Now, if we denote by and by the maximum absolute values that the \p may

reach within the above interval, it is found that

exp [-(/„<£0 + 01,o)e] exp [-^m.ofaW3 —

< exp [-«(/„<£ + <^>i)] < exp [-(/„<*>„ + 0i,o)«] exp [^m.0fa1/3 + </vi fci/s]

or

exp [-e(fa<t> + <!>>)] = [1 + 0(/J1/3)] exp [-e(j>o + <£i.o)],

and hence that

[ e(l - e)[2 + faF - /ae<£] exp + &)] de
Jo

= [1 + 0(/a"1/3)] f e(l - e)[2 + /J? - /„€&] exp [-t(/^„ + 0i,„)] de (51')
Jo

—l/3\n 1 f
= [i + o(/;1/3)]

fa4>0 <t>0

One thus obtains the expression being sought, namely,

w 72(1 _ u2)2(1 _ ^ ^ ^ ui>

where (ip0) denotes the asymptotic expression for <p0.
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It should be noted that the following is true:

■ _ y1/2ujf2 , yu2ujf, _ Pua   /, on

00 - 1 + yl'\a/f2 ai + 1 - yl/2uJh 013 1 - (iua a2 - 7(1 - ul){\ - J9ua) (53)

and consequently

1 - fiua F (I + yU2uJf2Y'f°( 1 - &ua

W a? fa Vl - y1/2ujfj Vl - y1/2ua/fj ■ (52}

In order to check Eq. (52'), we compare the value of <p0 given in Sec. 10.1 for Ma = 2,

/3 = 0.1, /„ = 20, 7 = 1, with that obtained from Eq. (52').
One sees that

- °-4 _ n 970 _ (0-4)(0-1) _ n1 2(0.66667)(1.1) ' (0.66667) (0.99) u-ubu5

and hence from the second of Eqs. (49) that

„ , 1.66667 . 0.9333 A A
log 0 3333 + 0.0605 log Q 3333 - 0.501.

Remembering that

(mr - mr - - mr -
it follows that the value of (<p0) given by Eq. (52') is

M = 'yyf3 • (6494.3)(3.4834) = 3290 instead of 2681.

One may improve the approximation by taking 0.99 ua instead of ua in the expo-

nentials in the right-hand side of Eq. (52'); in fact, this assumption leads to the following

value for (tp0) : (ip0) = 2820. Analogously, for M„ = 2, 0 = 0.1, fa = 23.6666, one obtains

(vo) = 14640 instead of <p0 = 14707, etc.

10.5. Justification of the logarithmic drag law. By means of Eq. (52') one can easily

justify the logarithmic law for the drag, as given in Sec. 10.1. Remembering the first of

Eqs. (32) in Sec. 7, we may obtain from Eq. (30) of the same section that

dRx = — 27V(1 - ul)\vo) dcr = °- 2y2c;3(l - ul)2 1 ~ fUa F
o o a0

c'/2 dcr„r (l + yl"u./f*)~,/m( 1 - ft*. Y"- _ 1+V1 2\ 1 +n

X (27)1/2(1 - ul)1'2 Vl - yl/2ua/fj Vl - 71/2uJfJ - 7 (1 ~ Ma) dR-

or

c5/2 ^ = - ~r 7°'5"(1 - 1 - pua)F
CLCr QioO

(54)
v l 1 + yU2u./ftY>'-( 1-/3u„

X 1 1 - 7W2ua/fj Vl - 7\//.i
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We find from Eq. (54) that

X log

-1/2   I i0!y ( —rhn —A —  1 -
[2 7(1 - ul)]W2F g V Cr dcr J [27(1 - ul)]1/2F

(55)
9I/2

^-7°'5-"(l - uT5'\ 1 - pua)F
.OtoO

- A \og[-oVf^) + B,

which has precisely the form of Eq. (38) with the added distinction that it now shows

the influence that the Mach number and the thermic transmission through the wall

have on the drag.

We shall now compare the values of A and of B given by Eq. (55) with those obtained

in Sec. 10.1:

Ma = 1.5; ;8 = 0.1 ; A = 1.835 instead of 1.781; B = 3.04 instead of 3.8

= 1.5; =0.25; A = 1.74 " "1.671; B = 2.96 " "3.8

Ma = 2 ; /3 = 0.1 ; A = 1.89 " " 1.846; B = 2.92 " "3.7

= 2 ; =0.25; .4 = 1.73 " " 1.698; B = 2.64 " "3.27

Finally, it should be noticed that from Eq. (36) in Sec. 9 the following result may

be derived:

Cr'/2 [27(1 - u2a)]1/2F l0g (c'/2Rs) [2y(1 - ul)]1/2F l0g L b 7 ^ "

(56)

X (1 - *4r°-w] = D log (RscY2) + E

where 1 has been neglected in comparison with (b/fa)Rs .

On account of Eq. (42) in Sec. 10.3 and because of the expressions for A, B, D, E

given by Eq. (55) and Eq. (56), it is consequently found that

which clearly points out the increase in thickness of the boundary layer effected by an

increase in Mach number.

HEAT TRANSMISSION BETWEEN FLUID AND PLATE

The amount of heat which is transferred from the fluid to the plate, per unit length,

is given by



56 CARLO FERRARI [Vol. VIII, No. 1

dy

(58)

dx fo pUB(U - Ua) dy = Br,
d

where B is obtained from Eq. (10).

Therefore, what has already been stated in Sec. 5 appears to be true, i.e., that if

q = 0 then B = 0.

On the other hand (see Karman5) q = \v{dT/dy)v , where A„ denotes the coefficient

of thermal conductivity at the wall;_and since from Eq. ^11) one has that (dT/dy)v =

(T0/Ua)(l — 1/y) (dU/dy)p while (dU/dy)v = t/^p = p0{7fcr/2jup , it is found that

  -v To Y 1 ^ _Pa j t2   rri — rr T -1
Q ~~ rrz c% UaCr 1 opaUa q

Ua y 2 Vv 27 MP

The total amount of heat transferred from the fluid to the wall, for a length x of the

plate is then

Q = ^ qdx = X„ ̂  T0 Cr = X,(l - ulTyT0Rt Cr , (59)
Jo Mp fj,a ^7

which is consistent with the formula given by Karman in his paper,5 except for the

different expression for Cr .

APPENDIX

11. Sample calculation of tp0 for Ma = 1.5, |8 = 0, and/a = 20.

1 -I— 01 rr

<Po

where

- f .(i - *> TT-i™ 2+log iw
Jo (1 — ua(T) \1 — ua<j) L 2ua 1 — ua<r_

= ( 1  V
ia \1 + 2/Ml(k - 1)/

= 0.5571

and

= 7.1800.
2 ua

The numerical work necessary for evaluating the integral is carried out in Table IV.

Column 17 gives the value of the integrand for the various values of the integration

variable. Summing this column according to the trapezoidal rule gives

<Po = 934.0.
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Table IV.

1 - . Ua<T ©2 1 - © ©2 ©/© 1 + © 1 - © ©/©

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

1.0000
0.9000
0.8000
0.7000
0.6000
0.5000
0.4000
0.3500
0.3000
0.2500
0.2000
0.1500
0.1000
0.0500

0

0
0.0557
0.1114

0.1671
0.2228
0.2786
0.3343
0.3621
0.3900
0.4178

0.4457
0.4735
0.9014
0.5292
0.5571

0
0.0031
0.0124

0.0279
0.0497
0.0776
0.1117

0.1311

0.1521
0.1746

0.1987
0.2243
0.2514
0.2801

0.3104

1.0000
0.9969
0.9876
0.9721
0.9503
0.9224
0.8883
0.8689
0.8479
0.8254
0.8013
0.7757
0.7486
0.7199
0.6896

1.0000
0.9938
0.9754
0.9450
0.9031

0.8508
0.7891
0.7550
0.7189
0.6813
0.6421

0.6017
0.5604
0.5183
0.4755

1.0000
0.9056
0.8202
0.7407
0.6644
0.5877
0.5069
0.4636
0.4173

0.3669
0.3115
0.2493
0.1784
0.0965

0

1.0000

1.0557
1.1114

1.1671

1.2228
1.2786
1.3343
1.3621

1.3900
1.4178
1.4457
1.4735
1.5014

1.5292
1.5571

1.0000 1.0000
0.9443 1.1180
0.8886 1.2507
0.8329 1.4012
0.7772 1.5733
0.7214 1.7724
0.6657 2.0055
0.6379 2.1353
0.6100 2.2787
0.5822 2.4352
0.5543 2.6082
0.5265 2.7987
0.4986 3.0112
0.4708 3.2481
0.4429 3.5157

10 11 12 13 14 15 16 17

logic 7.18 @ logio 1 @ © X © © 2.3026 @ 2 +

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0
0.04844
0.09716
0.14650
0.19681
0.24856
0.30198

0.32946
0.35768
0.38654
0.41634
0.44696
0.47874
0.51163

0.54601

0
0.3478
0.6976
1.0519

1.4131

1.7847
2.1682
2.3655
2.5681
2.7754
2.9893
3.2092
3.4374
3.6735
3.9204

1.0000
2.2274
4.9842

11.2695
25.8882

60.9114

147.3000
232.0053
369.9167

596.2143
975.6600

1618.8148
2737.8125
4715.2222
8325.3333

1.0000
2.0171
4.0880
8.3473

17.2001

35.7976
74.6664

107.5577
154.3662
218.7510
303.9181
403.5705
488.4258
455.0189

0

0
0.2017
0.8176
2.5042

6.8800
17.8988
44.7998
69.9125

108.0563
164.0632
243.1345

343.0349
439.5832
432.2680

0

0
0.8008
1.6063
2.4221

3.2538
4.1095

4.9925
5.4468
5.9133
6.3906
6.8832
7.3895
7.9150

8.4586
9.0271

2.0000
2.8008
3.6063
4.4221

5.2538
6.1095
6.9925
7.4468
7.9133
8.3906
8.8832
9.3895
9.9150

10.4586
11.0271

X ©

0
0.5649
2.948

11.07

36.15
111.80

313.00
520.00
855.00

1376.00
2159.00
2534.00
4358.00
4520.0

0


