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Obviously we can combine all cases and write

~ ~ (3p(_p)1/2

This is obtained for

03 = 9*^ -^«? + ^(3)1/2(-p)3/2

PERIODIC MOTIONS OF A NON-LINEAR DYNAMIC SYSTEM*

By H. SERBIN (Purdue University)

1. Introduction. It is a matter of common knowledge that many problems of dy-

namics are non-linear in character and that the linearization of such problems is an

expediency adopted in the face of mathematical difficulties attending the non-linearity.

Fortunately, the linearized treatment gives useful results in a number of problems. On

the other hand, there are cases where the essential characteristics of the phenomenon

are altered by the assumption of linearity.

In the absence of general methods for handling non-linear problems, it is desirable

to investigate typical non-linear phenomena to as great detail as possible with the

intention of arriving at general methods of analysis.

One such problem is van der Pol's equation

- e(l - + X = 0, (x=ft,x"= ^). (1.1)

This defines the one-dimensional motion of a particle of unit mass suspended on a spring

of unit stiffness and subjected to negative damping at low amplitudes and positive

damping at high amplitudes.

The existence of periodic solutions of an equation of more general form

x + f(x)x + g(x) = 0 (1.2)

was considered by Lienard, Ref. 1, who proved, for g(x) = x and under fairly general

conditions on f(x) (see Ref. 2), that there exists a periodic solution. The proof used in

Ref. 1 was reproduced in Ref. 3 for g(x) ^ x.

In the present paper, the problem is considered from a different point of view. The

periodicity of the solution is shown to exist for a wider class of differential equations

(1.2) which can best be described and compared as in the following table:

Fix) = f fix) dx G(x) = [ g(x) dx fix), g{x)

Lefschetz F(°°) = °° Gi oo) > 0 Symmetric

Present paper F(») > 0 G(oo) = oo No symmetry required

Fi CO) =00 Gi oo) > 0 No symmetry required

*Received July 6, 1949.
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In addition, the case in which F(a>) and G(°o) are positive and both finite is dis-

cussed. It is shown that an example can be constructed in which a periodic solution

does not exist.

A number of inequalities relating to the initial energy and amplitude of motion are

derived on the basis of which one can, in some cases, calculate upper and lower bounds

of the amplitude of the periodic motion without solving the differential equation. This

should be useful in application to practical problems. It is conceivable, in some instances,

that an average of the upper and lower bounds will define the amplitude with sufficient

accuracy for the purpose required.

Since the problem is non-linear, one must expect such inequalities to be non-linear,

for instance, algebraic. The solution of these inequalities is carried out conveniently by

graphical methods. This must not be compared with graphical methods of solution of

the differential equation. It is conceivable that for a given degree of accuracy, examples

may be constructed of the type (1.2) in which the graphical method of solution by

isoclines would give results incorrect both qualitatively and quantitatively, showing a

periodic solution where none exists.

It should be pointed out that the assumption of symmetry in f(x) and g(x) made

heretofore is not consistent with the nature of the problem. If these functions are de-

termined empirically, then one will not have symmetry in the mathematical sense if

x and —x represent two different positions of the system. One is accustomed, in small

deflections, to replacing an empirical curve which is nearly parabolic at the origin by an

exact parabola. However, for large deflections, this is not permissible. Any lack of sym-

metry vitiates the validity of the theorem of periodicity as known heretofore.

A mechanical system illustrating the non-symmetric case is afforded by a pendulum

in which friction acts proportional to velocity. If one adds a device which acts through

a limited range of motion of the pendulum at the bottom of the swing in such a way

as to sense the velocity and then to force the motion proportional to the velocity over

the friction, then one would have the features characteristic of Eq. (1.2). If the constant

of proportionality is different for x and —x, the asymmetric case will exist.

2. Qualitative character of the solution. Consider the differential equation (1.2) and

define

F(x) = f f(x) dx,
•'O

G(x) = f g(x) dx, (2a)
•'0

H = A*'2 + G(x).

Make the assumptions:

(A) f(x) and g(x) are continuous for x S; 0,

(B) f(x) < 0 for 0 < x < Xi ,

(C) f(x) > 0 for x > Xi ,

(D) F(»>) > 0,
(E) g(x) > 0 for x > 0,

(F)

Then F(x) has only one positive zero, x — x2 .
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Since

dH

it follows from Eq. (1.2) that

dt = x [x + g(x)},

^=-Hx)x\ (2.1)

which shows that H increases with time for x < and decreases for x > xx . Dividing

both sides of Eq. (2.1) by x and simplifying,

g = =F/(*)[2(ff - G))l/\ (2.2)

where the sign is minus or plus according as the velocity is plus or minus.

Suppose H plotted versus x in an (x, H)-plane (Fig. 1). It is seen that H ^ G, the

equality implying that dH/dx = 0. At a point where H > G, the right side of Eq. (2.2)

satisfies the Lipschitz condition in H. Since f(x) and G(x) are continuous, it follows

from the fundamental existence theorem on the solution of ordinary differential equations

that there is one and only one solution passing through (x, H) for H > G. Referring to

Fig. 1, there are four distinct parts of the trajectory:

Part x f
dH
dx

01 + - +

13 + + -

35 - + +

56

The subscripts 0, 1, etc., will indicate the value of a variable at the corresponding

point of the trajectory.

It is clear that H1 , H2 , • • • , II„ , x3 are monotone, continuous, functions of H0 ■

The proof given in lief. 3 shows, in addition, that He, — H0 is a monotone increasing

function of x3 .

The analysis in the following pages is directed toward showing that H6 — H0 , re-

garded as a function of H0 on the interval 0 ^ H0 < <*>, changes sign. Because of the

monotone character of H„ — H0 , it will follow that there is one and only one trajectory

for which H6 = H0 .

3. Behaviour of the solution for 0 < x ^ x2 . Consider only those trajectories for

which x3 ^ x2 . Define

IU(G) = [ [2(H - (?)]1/2 dH,
J a

where the subscript ij indicates integration along the trajectory in the sense i —* j. If

G(x) < G'(x) on the part ij of the trajectory, then /,,((?) < I<j(G'). Since
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la = =F f fix) dx = =F(F/ - F,),
J a

it follows that1

701(0) = (2H1)1/2 - (2ff0)1/2 < 701«7)

= -F, < 701«?l) = [2(77, - (?i)]1/2 - [2(770 - GO]172,

721«71) = [2(H1 - (?,)]1/2 - [2(ff, - (?0]1/2 < 721(G)

= —Fj < I21(G2) = [2(77, - G2)]U2 - [2(7T2 - (?2)]1/2.

(3.1)

(3.2)

From (3.1), it follows that

{[27? J1/2 + Fx}2 < 2H0 < {[2(Hl - GO]172 + F,}2 + 2G, ,

and from (3.2) that

{[2(77, - GO]1'2 + F,}2 + 2Gt < 2H2 < {[2(i7, - G2)]1/2 + F,}2 + 2G2 .

The latter two inequalities yield

0 < 2(H2 - Ho) < -2F1{[2Hl]1/2 - [2(77, - G2)]1/2}

—4F1G2 ^ — 4FjG2 (3,3)

{[2Hj'2 + [2 (77, - G2)]1/2i < (2Ho)1/2 '

The smallest value of x3 for which the derivation of (3.3) is applicable is x3 = x2 ;

for this choice of x3 , it follows from the first part of (3.3) that H2 = G2 > H0 . Hence

when H0 exceeds G2 , x3 will be larger than x2 and (3.3) is valid.

A similar argument applied to the trajectory 456 yields

0 < 2(776 - 774) < —2Fj{[2i75]1/2 - [2(ff. - G2)]1/2}

-4F,G2 ^ -4 F,G2 (3-4)
( rctTT 11/2 I r n/rr \ il/2>{[2775]1/2 + [2(Ht - G2)]1/2} " {(2H,)1/2 + F,} '

where the last inequality in (3.4) is based on the assumptions H5 — G2 > 0 and

[2i76]1/2 + F, > 0. However, when /TV, S: /70, these are both satisfied if II„ is chosen so

large that
(2i7„)1/2 5; (2G2)1/2 - F, . (3.5)

For,

(2i75)1/2 = (27/6)1/2 - 766(0) > (277,)1/2 + F, ^ (2//0)1/2 + F, ^ (2G'2)1/2 > 0.

Therefore, assuming II,, S; i70 and (3.5), one has from Eqs. (3.3) and (3.4)

II2 - Hi < (H2 - IIo) + (i76 - H4) < - 2F,Ch 2FtGj2

— — 2FlG2\ ,orr ,172 +

(2H0)1/2 (2/7„)1/2 + F1

(3.6)
1

(2H0) 1 [(2H0)1/2 + Fj]J'

'The following analysis, which leads to inequality (3.3), sharper than the author's original result,

is due to the reviewer.
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4. Behaviour of the solution for x ^ x2. Since I32(G) = Ii3(G) = F3 and (II — G)32 >

(H - G)„ ,

H2 — H3 = [ dH > f dH = H3 — H4 ,
J32 "43

H2- ff4 = (H2 - H3) + (H, - H<) < 2(H2 - H3).

(4.1)

Also,

(4.2)

(4.3)

h*(G2) = [2(H2 - G2)]u2 - [2(H3 - Ga)]u2 < IUG)

= F3< I32{G3) = [2(H2 - (?3)]1/2 < [2{H2 - Ht)]l/2.

From the first part of (4.2), it follows that

2(H2 - G2) < [2(H3 - G2) + F3]2,

2(H2 - H3) < Fl + 2F3[2(H3 - G2)]W2 = Fl + 2F3[2(G3 - G2)]W2.

Combining with (4.1), we obtain

H2- H<< Fl + 2FMG3 - G2)]x/i. (4.4)

Using the second part of (4.2), we have

hFl < II2 - H, < Fl + 2F3[2{G3 - G2)]'/2. (4.5)

Using (3.6) and (4.5), we can now state:

Theorem 1. When conditions (A)-(E) are satisfied and H0 is so large that

(2H0y/2 ^ (2(?2)I/2 - F, , (4.6)

F's ~ 4Fl(?2\(2H0)l/2 + [(2//0)1/2 + F,]/' (4'7)

then x3 > x2 and Hs < H0 .

As H0 increases, H, increases. Tf //2 — Ht —then, from (4.5), F( <»)•(?(<») = .

On the other hand, F(°°) = °° implies H2 — Ht by (4.5). If Cr(°°) = 00, then

H2(> G3) approaches infinity as x3 —Hence by (3.3), H0 —>°°- Therefore condition

(F) is equivalent to:

i70 —■*00 as x3 —> 00.

Now suppose that the differential equation (1.2) is defined for x < 0 and that condi-

tions corresponding to (A)-(F) are satisfied for x ^ 0; specifically, assume that:

(A') fix), g(x) are continuous for a; ^ 0,

(B') f(x) <0 for x[ < x < 0,

(C') f(x) >0 for x < x[ ,

(D') -F(- 00) > 0,

(E') —g(x) >0 for x < 0,
(F') -F(-co)G(-co) =00.
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If one replaces a; by — £, eq. (1.2) becomes

£ + /i(£)S + <?i(£) = 0,

where

m) = k-q,

9i (?) = -ff(-l),

Then

/id), si®, = f /!© g,© = f fir,® #
«^0 ^0

satisfy conditions (A)-(F), although with replaced by —x[ .

Now consider in the region x ^ 0 a trajectory starting with initial energy H0 , re-

turning to £ = 0 with energy , continuing into the region x < 0 (with initial energy

i?6), and returning to x = 0 with energy II12 . Because of assumption (F), II r> and H12

are monotone increasing functions of H0 in the interval 0 S H0 < H12 . According to

Theorem 1, 77f) < II,, for sufficiently large H„ . If //<■, were unbounded as II,, —then,

applying Theorem 1 to the region £= — x ^ 0, 776 may be chosen so large that II12 < H6.

Hence for large H0, Hl2 < H0 .

Now consider motions of small amplitude. When x3 ^ x2 , H0 < H6 . A similar

result holds for negative x. Therefore for small H0 , H12 > H0 .

Therefore H12 is a continuous, monotone-increasing function of IIa for 0 ^ H0 < oo

such that H12 — H0 changes sign. For some //„ , IIl2 = H0 , showing that there is a

periodic solution of eq. (1.2). It is shown in Ref. 3 that 776 — Hu is monotone decreasing.

Then H12 — IIa and 77 fi — II„ are also monotone-decreasing and the periodic solution

is unique.

Theorem 2. If Eq. (1.2) satisfies conditions (A)-(F) and (A')-(F'), there is a unique

periodic solution.

5. A counter-example. Let us denote a trajectory recurrent when 776 = II0 ■ It is

shown in Ref. 3 that if fix) is even and g(x) odd relative to x = 0, a periodic char-

acteristic is recurrent. It will now be shown that when condition (F) is not satisfied,

there is, in general, no recurrent trajectory and therefore no periodic solution.

Consider the family of equations (1.2) defined by

F,(x) = F(x), 0 ^ x ^ x2 ,

= tF(x), x ^ x2 , 0 < e ^ 1

For every e,

G2 £ H, g G(co) <co. (5.1)

Now for every choice of H4 satisfying (5.1), consider the trajectory 456 (Fig. 1)

and that trajectory 012 for which H0 = II s of the afore-mentioned part 456. Then

H2 — Hi is a positive-valued, continuous function of 774 on the closed interval (5.1);

H2 — Hi therefore attains a minimum A > 0 for some Ht.
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If there were a recurrent solution for (1.2) for every e, 0 < e ^ 1, then from (4.4),

0 < A SH2-H,< [Ft(x,)T + 2Fl{x3){2[G{x3) - (?2]}1/2

< W")]* + 2eF(oo){2[G!(°°) - G2]}1/2.

By choosing e small enough, the inequality may be violated. Hence for such an e,

H0* He.

 X 0 2 4 6 8 10.,
~ i * no

Fig. 1. Qualitative characteristics of the trajectory. Fig. 2. Graphical solution of upper bounds.

6. Numerical bounds. It is useful, for application to specific problems, to develop

numerical bounds to the amplitude x3 of recurrent motion. Since x3 > x2, a lower bound

is x2 ■ The following set of inequalities is useful, in some cases, for obtaining an upper

bound to x3 and H0 ■

For x3 > x2 , one has, using (3.3) and (4.3)

G3 < H0 + (H2 - H0) <H0- —p, , (6.1)

H0 < (H2 - H3) + II3 <~ + F3[2(G3 - G2)]v2 + G3 . (6.2)

A trajectory satisfying inequalities (4.6), (4.7), (6.1), and (6.2) has the property H0 > H6

and its maximum amplitude x3 and initial ordinate H0 furnish upper bounds to the

corresponding characteristics of the periodic motion.

Example. Take f(x) = — J(1 — x ), g{x) = x.
Then,

F(x) = | (-* + §^), G{x) = x, = 1, z2 = 31/2,

f - I r-i r - ? .
3 9 2' 2

The graphical solution of the inequalities is shown in Fig. 2. The curve of x3 vs. H0
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lies between the curves labelled (6.1) and (6.2); the intersection with curve (4.7)

defines a point whose coordinates are suitable as upper bounds. Referring to Fig. 2,

it is seen that x3 at point A is an upper bound to the amplitude and H0 at point B is

an upper bound to the initial energy. Thus

1.73 < x3 < 2.50

and the average 2.11 of the bounds is in error by less than 23%.
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QUENCHING STRESSES IN TRANSPARENT ISOTROPIC MEDIA
AND THE PHOTOELASTIC METHOD*

By R. C. O'ROURKE and A. W. SAENZ (University of Michigan)

Introduction. It is well known that when a transparent non-crystalline solid, such

as glass, is heated to a uniform temperature 7\ and then rapidly quenched in a bath

at temperature T0(T1 > T0) there results a non-uniform stress distribution. Depending

on T, , one can divide these stresses into two distinct classes. If Tl is sufficiently lower

than the softening temperature of the material, then the stresses are transient, but if

rl\ is sufficiently high (say 550° C for lime glass) then the quenching stresses are not

transient but, on the contrary, remain permanently set into the glass. The latter are

referred to in the literature as quenching or residual stresses. As is well known, the

existence of such residual stresses is made manifest when the object is examined in

polarized light, and by violent explosive characteristics of quenched objects when cut.f

Each distribution of such stresses is characterized by a definite double refraction pat-

tern. In 1841, F. E. Neumann1 developed a general mathematical theory of the double

refraction of light in non-uniformly heated isotropic solids. In turn the problem was

studied theoretically by such men as Maxwell,2 and Lord Rayleigh.3

The purpose of this paper is three-fold:

(1) To develop a mathematical theory of residual stresses based on a simple model

'Received July 11, 1949.
fFor details on the background of the subject see E. G. Coker and L. N. G. Filon, Treatise on ■photo-

elasticity, Cambridge, 1931, §§ 332 and 333.
'F. E. Neumann, Die Gesetze der Doppelbrechnung des Lichtes in comprimierten oder ungleichformig

unkrystallinischen Korpern, Abh. Konigl. Acad. Wiss. Berlin, Part II, pp. 1-254 (1841).

2J. C. Maxwell, On the equilibrium of elastic solids, Roy. Soc. Edin. Trans. 20, 87-120 (1853).

sLord Rayleigh, On the stresses in solid bodies due to unequal heating and on the double refraction

resulting therefrom, VI-1, pp. 169-178, 1901; see also Arch. Neerl. (II) 5, 32-42, (1900) and Collected
Papers, vol. 4, p. 502.


