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lies between the curves labelled (6.1) and (6.2); the intersection with curve (4.7)

defines a point whose coordinates are suitable as upper bounds. Referring to Fig. 2,

it is seen that x3 at point A is an upper bound to the amplitude and H0 at point B is

an upper bound to the initial energy. Thus

1.73 < x3 < 2.50

and the average 2.11 of the bounds is in error by less than 23%.
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QUENCHING STRESSES IN TRANSPARENT ISOTROPIC MEDIA
AND THE PHOTOELASTIC METHOD*

By R. C. O'ROURKE and A. W. SAENZ (University of Michigan)

Introduction. It is well known that when a transparent non-crystalline solid, such

as glass, is heated to a uniform temperature Tx and then rapidly quenched in a bath

at temperature T0(T1 > T„) there results a non-uniform stress distribution. Depending

on T, , one can divide these stresses into two distinct classes. If is sufficiently lower

than the softening temperature of the material, then the stresses are transient, but if

T1 is sufficiently high (say 550° C for lime glass) then the quenching stresses are not

transient but, on the contrary, remain permanently set into the glass. The latter are

referred to in the literature as quenching or residual stresses. As is well known, the

existence of such residual stresses is made manifest when the object is examined in

polarized light, and by violent explosive characteristics of quenched objects when cut.f

Each distribution of such stresses is characterized by a definite double refraction pat-

tern. In 1841, F. E. Neumann1 developed a general mathematical theory of the double

refraction of light in non-uniformly heated isotropic solids. In turn the problem was

studied theoretically by such men as Maxwell,2 and Lord Rayleigh.3

The purpose of this paper is three-fold:

(1) To develop a mathematical theory of residual stresses based on a simple model

*Reeeived July 11, 1949.
fFor details on the background of the subject see E. G. Coker and L. N. G. Filon, Treatise on photo-

y, Cambridge, 1931, §§ 332 and 333.
'F. E. Neumann, Die Gesetze der Doppelbrechnung des Ldchtes in comprimierten oder ungleichformig

unkrystallinischen Korpern, Abh. Konigl. Acad. Wiss. Berlin, Part II, pp. 1-254 (1841).

2J. C. Maxwell, On the equilibrium of elastic solids, Roy. Soc. Edin. Trans. 20, 87-120 (1853).

3Lord Rayleigh, On the stresses in solid bodies due to unequal heating and on the double refraction

resulting therefrom, VI-1, pp. 169-178, 1901; see also Arch. Neerl. (II) 5, 32-42, (1900) and Collected
Papers, vol. 4, p. 502.
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of the quenching process. This theory is essentially a careful reinterpretation of the

classical theory of thermal stresses, and is implicit in the work of Lord Rayleigh.3

(2) To justify, at least in a preliminary way, the use of the photoelastic method in

the study of quenching stresses with particular emphasis on glass.

(3) To recognize the problem of determining the distribution of stresses photo-

elastically in symmetrically quenched spheres and cylinders as a simple problem in

integral equations.

1. Photoelastic preliminaries. In this section the necessary photoelastic formulas

used in the study of residual stresses in spheres and cylinders will be developed. The

Maxwell-Neumann stress-optic law* states that the secondary principal stresses in the

plane of the wave front are related to the retardation dR, suffered in traveling a distance

dy, as follows:

dR = C(P - Q) dy (1.01)

provided the direction of the principal stresses in the plane of the wavefront does not

vary along the light path (Fig. 1). It is desired to calculate the integrated retardation

suffered by a plane monochromatic wave in passing through symmetrically quenched

spheres and cylinders. The wavefronts are parallel to the x-z plane (Fig. 1). For the

integrated retardation one can write:

R(v) = C f+V (P - Q) dy (1.02)•i-i,

(C is the stress-optic coefficient in Brewsters; y is measured in mm; (P — Q) is the differ-

ence of the two principal stresses in the plane of the wavefront).

In the case of a long cylinder, whose surface is kept at T0 , the stress tensor in cy-

lindrical coordinates assumes the following diagonal form:

ffp(p) 0 0

0 o>(p) 0

0 0 cr2(p)

(1.03)

where <j? , o> , and az are functions of p only. In order to obtain the principal stresses

in the plane of the wavefront, one must transform the stress tensor (1.03) to appropriate

cartesian axes (See Fig. 1) by means of a rotation about the z axis through an angle >p,

given by

cos 4> sin <f> 0

R,(<l>) - — sin 0 cos 0 0

0 0 1

which transforms the stress tensor to:

(1.04)

4For the basic photoelastic concepts, see Coker and Filon, loc. ext., Chapter III, especially paragraph

3 and 10.
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cos2 <i><Tp + sin2 <j)crJ, sin <p cos 4>(ap — <r0) 0

' xy ' xz

' zx ' zv CTz

sin <j> cos 4>(<tp — tr0) sin2 4>ap + cos2 <t><rt 0

o-2

(1.05)

PLANE OF WAVE FRONTS
i i

Fig. 1. Normal incidence on cylinder.

From (1.05) one readily identifies the principal stresses in the plane x — z of the wave-

front as

P = <r, ,

(1.06)
Q = cos2 <£(7,, + sin2 .
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Reversing roles of P and Q merely changes the sign of the retardation. This is equivalent

to inverting the Babinet Compensator.6 Thus the total retardation becomes:

/ + 7I

{a, — cos2 i/xt, — sin2 dy. (1.07)

Now, this integral can be simplified because of the inherent symmetry involved in the

study of spheres and cylinders. One expresses cos2 <p, sin2 <p, and y in terms of £ (Fig. 1)

  | ^ TYPICAL LIGHT PATH
EQUATORIAL

PLANE

\ /////JGHT

PLANE OF WAVE FRONT

Fig. 2. Normal incidence on sphere.

and p, and notes the fact that <xp, o-0 and uz are functions of p only. Then equation (1.07)

becomes:

R(H) = 2C /{6 {(^ - <7,) + (a, - <rp) P_d>y/2 ■ (1.08)

This equation is of fundamental importance for the study of residual stresses in

cylinders and spheres. It can be studied in two different ways, both of which are treated

in detail below. The function R*(£), (an asterisk will signify that the function is obtained

6Coker and Filon, loc. cit. paragraphs 1 and 36.
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experimentally), is easily obtained with a suitable Babinet compensator. (1.08) reduces

to an Abel integral equation with the aid of appropriate substitutions, thereby enabling

one to give an exact solution for each of the three stresses, <t„ , , az . (See Section III).

The second way of treating (1.08) is to employ a model of the quenching process (Sect.

II), and calculate <t„ , , and <r2 , thereby finding a theoretical retardation pattern

22(f) which can then be compared with experiment. The case of the sphere lends itself

to an analogous treatment. One measures R*(£) along the equatorial plane (See Fig. 2)

where no rotation in the plane of the wavefront occurs. The stress tensor is diagonal in

spherical coordinates r, #, <p, for a sphere quenched in the same way as the cylinder

above. It assumes the form:

o> = . (1.09)

<rr(f) 0 0

"a || = 0 o$(r) 0

0 0 <rv(r)

The retardation integral for the sphere becomes:

m) = 2C? j* (o> - ov) r(r2 _^2)1/2 • (1.10)

2. Applicability of photoelastic method in the study of quenching stresses. In Sec. 3

a method will be developed which reduces the calculation of residual stresses in sym-

metrically quenched spheres and cylinders to the inversion of Abel's integral equation.

For the cylinder, this method will depend upon the assumption that residual stresses

are elastic stresses; this assumption is implied in the "sum rule." The "sum rule" is

the relation uz(p) = <rp(p) + a0(p) which is characteristic of thermoelastic stresses in

symmetrically quenched circular cylinders (hollow and solid). The necessity for making

this assumption lies in the fact that the method being proposed uses relative retardations

2?*(£) (Babinet Compensator) instead of absolute retardations (Mach-Zehnder inter-

ferometer). If absolute retardations are measured, then one can invert the appropriate

Abel integral equations of Sec. 3 without the "sum rule" ansatz. (This will be reported

on elsewhere.) However, for practical purposes, it is much more expedient to measure

relative retardations since, as will be shown in Sec. 3, one obtains the complete distri-

bution of residual stresses in symmetrically quenched cylinders from a single photo-

graph of R*(Q.
It is therefore necessary to give some justification for the "sum rule" ansatz in the

case of residual stresses of the type being considered. There are at least four exact

methods for showing the elastic nature of these residual stresses, two of which will be

explained now. First of all, Eq. (1.08) can be written in the following form:

R*® = 2(7 J <r, , p_d^y/2 , (2.01)

since equilibrium demands that

f Q dy - 0.
•'O
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Now if one uses the "sum rule" and the equilibrium equation

fp (p<rp) ~ '* = °

Eq. (2.01) becomes

R*(.S) = 2C fp (PVp) (p2 _^2)1/2 ■ (2.02)

From (2.02), using Dirichlet's principle for inverting orders of integration and the

fact that <rp(a) = <rP(b) = 0, one easily derives the interesting relation

f R*(& d{ = 0 (2.03)
J a

For those residual stress patterns which have been studied, (2.03) is very accurately

satisfied. Secondly, it is of further interest to see if one can construct a model of the

quenching stresses from which a theoretical expression for R (£) can be computed and

compared with the experimental pattern R*(£). This is indeed possible and will be briefly

discussed here. First of all, one assumes the existence of a "state of ease" at a temperature

T*, such that for T > T* all stresses in the body are negligibly small compared to the

stresses for I" « P (of order 10k°/ mm2 for lime glass). Secondly, one neglects the

temperature variation of the elastic and thermal constants. The striking agreement

obtained so far between theory and experiment seems to indicate that the model is

essentially correct. Many experimental investigations have revealed the fact that the

properties of amorphous materials, such as glass, change rather abruptly at a certain

critical temperature.6 The proposed model merely idealizes this fact by making the

elastic constants change discontinuously at the critical temperature T*.

These assumptions readily lead to the following rule:

To calculate the residual stresses in a body (A) quenched from the uniform

temperature Tx to the temperature T0 of a bath (2\ > T0), one calculates

the thermal stresses at time t = t* (T — T*) in an elastic body (B), with

the same elastic and thermal constants as (A), whose initial temperature is

Ti and whose surface beginning at t = 0 is maintained at 1\ . The stresses

in (B) at t = t* are the negative of the residual stresses at t —> <» in (A). (2.04)

Since the problems of thermoelastic stresses in spheres and cylinders have been dealt

with thoroughly in the literature, it is not necessary to discuss them here. Essentially,

one takes the pertinent solutions (say from Timoshenko6), replaces t by t*, changes the

signs of the stresses, according to (2.04), and substitutes into (1.08) and (1.10) to obtain

the theoretical retardation patterns. The theoretical retardation patterns for cylinders

and spheres have been calculated in this fashion and are given below:

5R. Houwink, Elasticity, plasticity, and structure of matter, Cambridge, 1940, Chap. 3 and 6.

6S. Timoshenko, Theory of elasticity, New York, 1934, Chap. 11.
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Solid Cylinder (radius b):

, . ±CaE{Tx - T0) y, exp (-x£<*) p( . ^
m~~ 1-, 6 £ ({.)>) B(n'X)

r(»;x) - -JMMi - »')"■ +i z'2L+.'rr:'"" "

(2.05)

*-o«-o 4l+'-/fc!(A: + 2Z + 1)!

where

/1   \2sfc+!-l/2 J2i+l(X£n&) / 1 X . 2(k 4" QX

; ' X \2(k + I) + 1 2(k + I) - 1

£„ are positive roots of J<>(,&>) = 0 and X = £/& (Fig. 1)

In practice t* is sufficiently large so that only the "shape factor" 72(1, X) need be

calculated (see Fig. 3):

(B) Hollow Cylinder: (a < p < b)

R(X) = -2(7 ± exp (-*&*) 4= " 2«^.fea)
X Pn-1 fn I O ®

I V V )l+' + 1(2i + l)*ftn&)" + 2' ^2I + l(X|„f>) /-fl r>p\

■(1_X) + 4t+1fc!(2Z + /b + 1)! X (2'06)

/•.   ^2^+1-1/2/ 1 X 1 2(fc 4" QX

; \2(Jfc + I) + 1 ^ 2(k + I) - lj'

where

A--'i <?' ~ jaaf-lsa..) ibZ'i(-b> ~ aZM-a)]

Z0(x) = J0(x)N0(^b) - NoWJo&b)

£„ are roots of Zn(£a) = 0

(C) Sphere (radius b)

R( X) = - f^v (T1 - T^f.b. t (-Tn exp (- ^^)ft(n; X), (2.07)

where

R(n; X) = X2 ± (1 " X2)*+,/V*+5/2(n7r)

The leading terms i2(l; X) for (2.05) and (2.07) are plotted in figures 3 and 4 re-

spectively. The agreement between these "first approximations" i?(l; X) and the corre-

sponding experimental patterns R*(\) obtained so far furnishes strong argument for the

applicability of the photoelastic method in the determination of the type of quenching

stresses under study here.
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3. Photoelastic determination of quenching stresses in spheres and cylinders.

Equation (2.02) is Abel's integral equation so that the problem of finding the distribution

of residual stresses in symmetrically quenched cylinders reduces to the inversion of this
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Fig. 3. Characteristic photoelastic curve for Fig. 4. Characteristic photoelestic curve for

quenched solid cylinder. quenched glass sphere.

integral equation, which is well known. The complete solution for cylinders can be

written in the form:

_ _ j_jl rwf
°Ap) ~ tC p2 Jp (t - Py/2'

°>(p) = Yp (3"01)

o%(p) = o-p(p) + ^(p).

For the case of spheres, one immediately recognizes (1.10) as Abel's integral equation

without the necessity of a "sum rule" (which does not exist for the corresponding

thermoelastic stresses). A similar inversion yields:

" " 5? I'
R*(£) dt

£(£2 - r2)1/2 '

(3.02)

<Ti(r) = <Tt(r) = T- J; ffr + <T, .
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Thus, the entire problem reduces to quadratures. R*(£) is an analytic function of

the light-path variable r\ (or (b2 — £2)I/2). Thus one can write

R*(S) = ± ak(b2 - ef/2 (3.03)
A: = 1

If (3.03) is substituted into (3.01) the quadratures can be performed and one finds

for cylinders:

2 M - _ r(l/2) r(fc + 1) / 7 2 2\ (A+1 )/2 /o rtyix

P ap P] 2tC £ k T(k + 3/2) ( 9) (3-04)

Correspondingly for spheres equation (2.07) suggests the following ansatz:

Z#2-f)'t (3.05)
k=-l

and (3.02) yields

ffr® = ~ rC r(~1//2') S C" T(Jc + 3/2) ^ ~T ^ 1>/2 ('3"06-)

The coefficients aK , cK are easily obtained by fitting R*(£) by the method of least

squares.

From the above results, it is seen that the method in this section rests on the "sum

rule" for the case of concentric and solid cylinders, while in that of spheres no such

assumption has to be made. It is thus clear that equations (3.01) and (3.02) are inde-

pendent of the detailed nature of the boundary conditions of the problem, and that they

are therefore applicable when large radiation losses are present which cannot be accounted

for by the simple Newton law of cooling, a situation which would preclude the use of the

method of Sec. 2, from a practical standpoint.

The results obtained so far employing the procedures of Sec. 3 are of technical im-

portance in locating exposed tension regions (i.e., unstable regions) in quenched cylinders

and spheres. In such work one desires to know the sign of the boundary stresses, their

absolute magnitude being of secondary importance. One could also gain rough ideas

concerning residual stresses in non-transparent polycrystalline materials, such as steel,

by simply changing the elastic and thermal constants appropriately and using ideas of

similarity.


