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THE REFLECTION OF AN ELECTROMAGNETIC PLANE WAVE
BY AN INFINITE SET OF PLATES III*

BY

ALBERT E. HEINS

Carnegie Institute of Technology

1. Introduction. In 1947, J. F. Carlson and the present writer [1], [2] investigated the

reflection properties of an electromagnetic plane wave by an infinite set of parallel

plates. The problem was investigated for two polarizations, that is, the cases for which

(a) the electric vector was parallel to the edges of the parallel plates and (b) the magnetic

vector was parallel to the edges of the plates. Let us remark in passing, that case (b)

is equivalent to a problem in acoustics. One may see this very easily by referring to

CH II and noting that the problem solved there is a scalar electromagnetic problem

and one can pair electromagnetic terminology with acoustic terminology and note the

equivalence.
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Fig. 1

In CH I and CH II, we solved the problems subject to the fact that there be a single

propagating mode in the ducts and a single reflected wave in free space. We shall still

retain the first hypothesis but shall reinvestigate the second one. We shall be concerned

with the case in which there are two reflected waves and shall find the restrictions on

wave length, angle of stagger and angle of incidence. We shall also find the new trans-

mission coefficient as well as the two reflection coefficients. As a check, it will be shown

that there exists a relation between the magnitudes of these coefficients which can be

calculated with the aid of the complex form of the Poynting vector theorem. The case

that we consider here is the "E plane" case, the one which has the acoustical analogue.

Since the formulation of this problem has been discussed in CH I and CH II, we

only summarize the pertinent equations we used in CH II. We refer to Figure 1 for a

view of the structure in any plane parallel to the y z plane.

*Received Oct. 19, 1949. The material treated here is taken from an invited paper presented to the

U.R.S.I.-I.R.E. meeting in Washington, D. C., on October 31, 1949.
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The angle of incidence of the plane wave is 6; the angle of stagger of the parallel plates,

which are semi-infinite in the z direction and infinite in the x direction, is a. The line

0 N is perpendicular to the trace of the edges and the angle /3 [3] is the angle which the

direction of propagation of the plane wave makes with this normal. Furthermore we

have that a — x < 8 < a and 0 < a < ir/2. It is assumed here that the incident wave

has only one component of the magnetic field, Hx(y, z), that is, the one which is parallel

to the x axis. For such an excitation, no other components of the magnetic field can be

excited and hence the electric field may be derived from Hx(y, z). If we now assume

that the time variation of the field quantities is monochromatic, that is of the form

exp ( — ikct), then the Maxwell equations assume the form

V X E = ikH (1.1)

and

V X H = -ikE (1.2)

where k = 2ir/X and X is the free space wave-length. Here c is the velocity of light in

units appropriate to those of X. Let us, as a matter of notation, introduce Hx(y, z) =

z). Then (1.1) and (1.2) reduce to

^ + S + ̂  = ° (L3)
and this is to be solved subject to the boundary condition that the z component, of the

electric field vanishes on y = nd, z > nd cot a. If this boundary condition is expressed

in terms of \p(y, z) we see that this is equivalent to the vanishing of d\p/dy on y = nd,

z > nd cot a, n = 0, ±1, • • • . There are also conditions at infinity which have been

described in CH I.
We recall from CH II, Eq. (3.2) that this boundary value problem may be formulated

as a Wiener-Hopf integral equation for the current density on the plates. The plates

are assumed to be perfect conductors of zero thickness. That is

0 = ik sin 6 exp [ikz cos 6]

(1.4)

+ 7 Yj [ I»(z') exp [ikup] Hou [k{(z - z' + pg)2 + (y - nd - pd)2}W2] dz'
4 p=—co Jo

where z > 0. Here n = g cos 9 + d sin 6, and g = d cot a, while the variable y is set

equal to nd. Further the surface current density on the m plate is proportional to Im{z)

and may be expressed in terms of a single current density by the relation

Im(z - mg) = 70(z) exp [ikmn].

For all y and z we have then the following Fourier integral representation for \p(y, z).

\p{y, z) = exp [ik(y sin 6 + z cos 0)] — -j- [ dw J(w) exp [i(wz + k^n — wgri)]
4tt J c

cos {(y — nd — d)(k2 — w2)1/2} — exp [i(kn — wg)] cos \{dn — y)(k2 — w2)'/2}

cos [d(k2 — w2)1/2] — cos ikfj. — wg)

(1.5)
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where J(w) is

.J(w) = / Ia(z') exp ( — iwz') dz'.
•>0

The path C is drawn within a certain strip of the complex w plane which we shall define

in the following section. Here n is the largest integer in the ratio y/d. We assume here

that k has a small positive imaginary part, and the precise meaning of small will be

defined in Sec. 2.
2. The Fourier transform of the kernel of equation (1.4). The Fourier Transform

of the kernel of the integral equation (1.4) is

- | [k2 — w2}1/2 X exp [ip(kn — wg) + | p | d{k2 — w2}1/2]. (2.1)
£ P= — oo

We choose here that branch of (k2 — w2)1/2 which reduces to k when w = 0. The series

in (2.1) is not in a particularly useful form since it does not exhibit the singularities of

the function it represents, save for the possible branch points at w = ±k. We say possible

branch points advisedly, since in closing this sum, we shall find that they disappear

and the only singularities possessed by (2.1) are two infinite sequences of poles. In any

event, each term of the series has branch points at w = ±fc, so that each is regular in

the strip — < 3nxw < $mk. We observe further that the series (2.1) diverges when

- wg + d{k2 - w2}1/2 = 2m (2.2a)

or

kn - wg - d{k2 - w2}U2 = 2n% (2.2b)

n — 0, ±1, ±2, • • • . From Eqs. (2.2a) and (2.2b) it is clear that the singularities of

(2.1) are intimately related to the values of a, 6, d and k which we use. For n = 0, we

find that w may be k cos (2a — d) = a2 or k cos d = <xx . Since a — % < 6 < a and

0 < a < x/2, it is clear that Q'mcra < Smir, . From this we see that the series converges

at best in a strip 3iTter2 < $mw < 3m°"i and this is so, provided that there are no other

singularities given by Eqs. (2.2a) and (2.2b) which are in a smaller strip.

A next possible root which may be in the strip 3"to-, < comes from

Eqs. (2.2a) and (2.2b) by putting n = ±1. Let us assume that the angle /3 = x/2 +

6 — a satisfies the inequality 0 < (3 < -k/2. Upon solving Eqs. (2.2a) and (2.2b) for

n = 1 we get

wl = (2ir/d) sin a[— cos a(l — kn/2ir) + A] (2.3a)

and

w2 = (2w/d) sin a[— cos a(l — fcju/2x) — A] (2.3b)

where A is given by the expression

A = [(dk/2x)2 - sin2 a(l - V2tt)2]1/2

and the positive root is understood for A. The roots wi and w2 are written in this form

under the assumption that A is real for k real. Observe that satisfies Eq. (2.2a) while

w2 satisfies Eq. (2.2b) for n = 1.
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We now write Ar = A for k real and assume further that A does not vanish. Then

we may expand and w2 for 3 ml = e sufficiently small (where now e is small enough

to insure the convergence of the expansion) and we obtain

= [(e sin a)/d][n cos a + (d2kr + 2^ sin2 a — krfi2 sin2 a)/2xAr]

and
*

Srnw2 = [(«sin d)/d]\p. cos a — (d2kr + 2t^ sin2 a — kTfx sin2 a)/2xAr]

if we only retain first powers of e. In terms of the angle /3, these expressions may be

simplified to read

3tnu>i = e(cos a sin /3 + sin a(dkr cos2 /3 + 2x sin a sin /3)/2xAr]

and

3mw2 = «[cos a sin 0 — sin a(dkr cos2 /3 + 27r sin a sin 0)/2rAr].

Clearly, under the restrictions we have imposed on a and /3, 3mw>2 < Smw, so that it

remains to compare the relative orders of magnitude of 3mu>i , 3mw2 , 3m<xi and 3m<72.

We shall now show that 3mra2 < 3m°"i • This implies that

cos a sin 0 — sin a{dkr cos2 /3 + 2x sin a sin /3)/2irAr < cos 6

or

cos a sin £ — sin a(dkr cos2 /3 + 2t sin a sin 0)/2irAr < sin (a + 0)

From this, we get immediately

— sin a(dkr cos2 0 + 2t sin a sin 0)/2%Ar < sin a cos /3.

Since the left side of this inequality is always negative for a and 0 positive and acute,

while the right side is positive, it is clear that 3:mw2 < Snt^i . We have similarly that

3mo-2 < 3'mw! , 3mo"i < 3mwi , and 3mw2 < 3m<J2 • If we now combine all of the

inequalities we get

3mw2 < 3m<r2 < < 3111^ < 3mw,

Hence the series (2.1) converges in the strip

3m<72 < 3mw < 3mo-,

provided now that there are no other roots of Eqs. (2.2a) or (2.2b) in this strip. Such

will be the case, if we limit dkT properly. Let us suppose for the present that such is the

case.

One observes at this point, that if Ar is real for real k, that is for k — kr , then the

following inequality is satisfied by kT , d, 6 and a. We have here

dkr sin a

2x 1 + COS (0 — a)

But in order that one mode propagate in the ducts,

0 < (dkr)/2ir < J
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Hence, subject to the condition that 0 < /3 < r/2, the strip of regularity of (2.1) is as

we have given it, provided

sin a dkr 1

1 + cos (8 — a) 2ir 2

This inequality on (dkr)/2ir assures us of the existence of at least the two propagating

reflected waves in free space. Since we desire only two such waves, we should put down

conditions which insure that the remaining A„ for n = — 1, ±2, ±3, • • • be imaginary

for kr real. In the first place, the remaining roots of Eqs. (2.2a) and (2.2b) are

[(2xn sin a)/d][— cosa(l — kix/2im) ± iA„]

where

A„ = [sin2 a(l - kn/2imf - (dkf /4n\2]U2.

A„ will vanish if

(dk)/2mr — — sin a/[ 1 — cos (8 — a)] n — ±1, ±2, • • • (2.4)

or

(idk)/2mr = sin a/[ 1 + cos (6 — a)] n = ±1, ±2, • • • . (2.5)

But for n negative only, the roots

dk/2nir = — sina/[l — cos (0 — a)] n — —I, —2, ••• (2.6)

satisfy the inequality dk/2ir > 0, while for n positive, only the roots

dk/2nir = sin a/[ 1 +' cos (6 — a)] n = 1, 2, • • • (2.7)

satisfy the same inequality.

From the two sequence of roots (2.6) and (2.7) we can now form the condition that

there be only two reflected waves. One reflected wave arises from the root w = <r2 .

This we have seen in CH II corresponds to the reflected wave which makes an angle

with respect to ON equal numerically to that of the incident wave. The other one corre-

sponds to w = w2 . In order that a third reflected wave not be present

(idkr)/2ir < (2 sin a)/[l + cos (6 — a)] or sin a/[l — cos (8 — a)].

If dkr satisfies this inequality, it satisfies the inequality

0 < a — 6 < 7r/2

(dkr)/2t < (n sin a)/[\ + cos (6 — a)]

n = 3,4,

as well as

0 < a — 6 < ir/2

(dkr)/2ir < (nsina)/[l — cos (8 — a)]

n = 2, 3, • • • .

We have then the following condition for two reflected waves.

0 < (sin a)/[\ + cos (8 — a)] < (dkr)/2ir < {J or (2 sin a)/[ 1 + cos (8 — a)]

orsina/[l — cos (8 — a)]}
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The term on the right side is to be interpreted as the smaller of the three terms. For

example if sin /3 = .25, this inequality reads

0 < (4 sin a)/5 < (dkr)/2ir < {J or (4 sin a)/3}

On the other hand, if sin /3 = .5, this inequality reads

0 < (2 sin a)/3 < (dkr)/2w < or (4 sin a)/3}.

It is clear that we can find conditions for three or more reflected waves by arguments

similar to those that we have just used, but we shall not pursue this detail any further.

One final remark is in order. Suppose that x/2 < a — 9 < ir. In this case the inequality

reads

0 < (sin a)/[l — cos (9 — a)] < {dkr)/2ir < {5 or (2 sin a)/[ 1 — cos (6 — a)]

or sin a/[ 1 + cos (9 — <*)]}

with the same interpretation lent to the right side of the inequality as we did for the

case 0 < a — 9 < v/2.

3. The solution of equation (1.4). We define Eq. (1.4) for all z to read

Fiz) = Uz)

(3.1)

+ 7 E f 7o(z') exp [ikup] H^[k{(z - z' + pg)2 + (y - nd - d)
4 p=_oo j 0 dy

21l/2i dz'

where F(z) vanishes identically for positive z. Further \pn(z) = ik sin 6 exp [ikz cos 6] for

positive z and vanishes identically for negative z. In view of the restrictions we have

placed on dkr , 9 and a, we have that

F(z) = 0[exp («V2z)] + 0[exp (iw2z)} (3.2)

for z —> — 00. In order to see this, we rewrite Eq. (3.1) in Fourier integral representation as

F{z) = ypQ{z) — 7- I dw J(w) exp [i(wz + kfin — wgri)]
4 ir J n

2 1 l/2-i
{k2 — w2}1/2 sin [d{k2 — w'

cos [d{k2 — w2\l/2} — cos (kn — wg)

Since I0(z) has the same z dependence as the magnetic field, and since only the lowest

mode propagates in the ducts, J(w) is regular in the lower half plane < $mk.

Further since there are two reflected waves, the path C is drawn in the strip 3m<r2 <

3:mw < 3 m<r,[4]. In order to find F(z) for z —* — , we need only calculate the residues

of the poles in the lower half plane < 3 m°"i . Upon doing so, we find that the domi-

nant terms are of the form given in Eq. (3.2); all other terms which have been omitted

are small compared to these two. This incidently tells us that the unilateral Fourier

transform of F(z) is regular in the upper half plane Qntw > $Tn<r2 , provided we assume

the integrability of F(z) for z negative and finite. This may be verified with the solution

of the integral equation (3.1). The Fourier transform of i/<„(z) is regular in the lower
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half plane 3irau < Sniui . Finally the transform of the kernel (2.1) may be written in

closed form as

[k2 - to2}1/2 sin [d\k2 - w2}1/2] K.jw)

cos [d{k2 — w2}1/2] — cos [ky, — wg] K+(w)

and this is regular in the strip 3m<r2 < < 3m(r, . There is then a common strip of

analyticity to all transforms involved and it is thus permissable to apply the Fourier

transform to Eq. (3.1) to get

n/ s. _ k sin 6 _ K-(w)J(w)

1' w — (r, 2 K+(w)

If we separate terms as we did in CH II we get

T, . 2k sin 6K+{(Ti)
* <» -

and

, _ k sin 8[K+(w) - K+j^)]
n[W) (w - «i)K+(w)

The integral function of separation vanishes identically in this case. The terms K-(w)

and K+(w) are now given by the following expressions.

K-(w) = N-(w)/D-(w) and K+(w) = D+(w)/N+(w)

where
oo

N..(w) = {exp [x(w)}{k — w} I~[ [{1 — (kd/nir)2}1/2 -|- iwd/nir] exp [ — iwd/mr\
n= 1

N+(w) = {2 d{k + w)

CO

X exp [—x(w)]/(^2 + ff2)} n [{1 — (kd/nir)2)1'2 — iwd/nir] exp [iwd/nir]

and

DJw) = (w — <r,n [A„ — v&n} exp [{ley. — wg + iwd)/2mr + i(j/2 — a)]
\n= — oo

x { n [A„ + i%,\ exp [iky. — wg — iwd)/2mr — i(ir/2 — a)]

X {(^i — A) exp [(ky — wg + iwd)/2ir — i(ir/2 — a)]}

D+(w) = (w — o-2)| II [An + V&„\ exp [(ky — wg — iwd)/2nir — i(ir/2 — a)]

X I n [A„ — iyn\ exp [(ky — wg + iwd)/2nir + i(ir/2 — a)]

X {(>I/i + A) exp [(ky — wg — iwd)/2ir + i(ir/2 — a)]}.
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Here

A„ = {sin2 a(l - fcM/2n7r)2 - (M)2/4nV2}1/2 n = -1, ±2, •••

A = {(Jed)2/4ir2 - sin2 a(l - k,x/2irf\in

^„ = [cos a(l — kn/2mf)] + (wd csc a)/2nir n — ±1, ±2, • • •

and

x(w) = — [iwd/2n-][(a — x/2) cot a — In (2 sin a)].

The subscripts — and + on K, N or D indicate that the function is regular [5] in the

lower or upper half plane, as the case may be. For example Z)_(i») is regular in the lower

half plane 3mw < Onto-, , N-(w) is regular in the lower half plane 3mw < $mk, etc.

4. The investigation of the far fields. We have found J(w), the Fourier transform of

I0(z). If we now use Eq. (1.5), we have an integral representation for \p(y, z). From this

representation we can determine \p(y, z) for 2 —> °° (in the ducts) and ip{y, z) for z —> — °°,

(in free space). For z > 0, we close the path C in the upper plane [6] and obtain

My, z) = 2 d^-fjK^k) ^ ~~ exp ̂  ~~ ikg^ exp ^kz + klxn ~ kgn^

+ O[(cos iry/d) exp [—z{ir2/d2 — fc2}1/2J]

Hence for z —> <=° f \p(yi z) is asymptotic to

2rf(fc1_ef")+g'(fc) f1 ~ 6Xp ̂ k>1 ~ ikg^ eXp ̂ kz + kfin ~ kgn^

and from this we can find the transmission coefficient in the duct. It is

T - 2W^kjF) [1 " exp {ik" " *W1'

For k real, \ T |2 reduces to

I T I2 - (*l ~ + A\ sin2 (a - 6)

' Wi + A)i\yl — A/,, [cos2 0/2][sin2 (a — 6/2)]

where the subscripts k and <r, on the first two fractions indicate that w has been evaluated

at these values.

For z < 0, we close the path C in the lower half plane and obtain

ip(y, z) = exp [ik(y sin 6 + z cos 0)]

«/(or2) exp [ik\y sin (2a — d) + z cos (2a — fl)}]

2c/[cot (2a — d) — cot a]

J(w2){k2 — w211/2 exp [i{w2z + (k2 — w2)'/2j]

47r(csc a) A
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terms which attenuate exponentially for z —> — <». The term (fc2 — w\)1/2 may be written

as [2x/d] [A cos a — sin2 a(l — ktx/2-w)]. Hence the first reflection coefficient is

Ri = «/(<r2)/2d[cot (2a — 6) — cot a]

while the second reflection coefficient is

R2 = -J(w2)(k2 - w2)1/2/4ttA esc a.

For A: real

A. r =
(a2 — Ci)2 sin" (2a — 0)

K+(<rt)

K'M)

where the prime in K+(iv) denotes differentiation with respect to the argument w. Upon

simplifying further, we get finally for k real

| fti |2 = [cot2 (a - 0/2)][tan2 0/2]^ + aJ

Furthermore for k real

4fc2[sin2 a][tan2' fl/2][sin2 (a — 0)] + A

i + A1
i - a_L/

[w2 0*1 ][l#2 0*2] L*. Ilk — wiJ"

The values which we have given for | T |2, | RA |2 and | R2 |2 have been derived subject

to the conditions

, . . „ sin a „ dk _ J1 2 sin a sin a
W 0 <  • O < W < 1 O 0r'1 _L • o 0r 1~

1 + sin /? 2r (2 1 + sin /3 1 — sin

(b) 0 < 0 < tt/2.

The modification for — ir/2 < 0 < 0 is quite direct. We observe that for this case,

tt/2 < a — d < 7t. The requirement for two reflected waves for this interval of a — 0 is

, . . „ sin a „ kd J1 2 sin a sin a
0) 0 < 1—^r^<^<1o0ri—i-r^or

1 — sin /3 2x (2 1 — sin (3 1 + sin ,

In view of the requirement on a — 6, it is clear that the inequalities (a) and (c) are

equivalent. There are a number of modifications in the expressions for | R, |2, | R2 |2, and

| T |2 for the range —ir/2 < fi < 0, but we shall not pursue the matter further.

5. Conservation of power flow. As a check for our calculations of | T \ , \ Rt | and

| R2 I we shall now see what information we can derive from the Poynting vector theorem.

In the first place, the power flow from free space into any duct is (per unit length in the

x direction)

£ (rir)(E x H*)-n dy

where n is the normal vector into the parallel plate region. In terms of \p, this may be

written as

m i csc a fd T dip . ,
ihe —7:— / cos a — — sin a \i* dy.

2 J0 L dy dz Y * (4.1)
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Here y = z tan a, that is we are integrating over the opening of a parallel plate region.

Hence upon simplifying the parenthesis and integrating over y, we get

d CS2Ca [k sin (a - 6) - k | R, |2 sin (a - 6) - 2ttA | R2 \'/d].

This represents the average flow of power into a given duct per unit length in the x

direction. This in turn is to be balanced by the average flow of power far down the duct,

that is as z —, nd < y < (n + 1 )d. The magnetic field in the duct for z —+<*> ,nd <

y < (n + 1 )d is

= Tn exp [ikz].

Hence the power flow down any duct for z —>°o is | T \2d/2 (recall that Tn \ is inde-

pendent of n, the duct number). Hence conservation of power flow demands that

k \ T |2 = csc a[k sin («, — 6) — k | Ry |2 sin (a — d) — 2xA | R2 \'/d\. (4.2)

Upon substituting in | Rt |2 and | R2 |2 we find that Eq. (4.2) is an identity,-thus verifying

the conservation theorem.

6. Some concluding remarks. If we try to find conditions for higher reflected waves,

that is the cases corresponding to n = — 1, — 2, • • • or n = 2, 3, • • • , we find that the

conditions for a given number of reflected waves become fairly complex. On the other

hand, a study of the zero of the A„'s and their ordering will show us how each reflected

wave enters. These results will depend on a and /J. The case /3 = 0, has been excluded

from our present discussion, but it offers no difficulties. In this case, we get higher re-

flected waves in pairs. The result is not surprising since the incident wave normal and

the normal to the trace of the edges of the plates are parallel.

For the case of a single reflected wave, we noted that the reflected wave has a normal

whose direction is independent of k. In the case of two reflected waves, the first reflected

wave has a normal whose direction is independent of k, but the second reflected wave has

a direction which is dependent on k. We shall present a discussion of the numerical

results elsewhere.

Finally, we observe that | R, |2, \R-i\2 and T [2 have not been normalized. If we

refer back to Eq. (4.2) and divide through by k csc a sin (a — 0), the normalized first

and second reflection coefficients, as well as transmission coefficients for the case dis-

cussed, are respectively

| Rt |2, 2irA csc (a — 6) \ R2 \2/d and | T |2 sin a csc (a — 6).

For the normalized coefficients, all magnitudes are numerically less than unity.
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4. At this point we realize that to get more than two reflected waves, the inequalities in sec. 2 have to

be modified. As we carry on this modification we find that an indefinite number of reflected waves can-
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„ „ 1 ^ dk ^ j 1
0 < ^—I :—7 < — < S - or -—; :—- or ■

1 + sin 6 2ir 1,2 1 + sin 6 1 — sin

for 0 < e < t/2. This is impossible since sin 9 < 1. Hence there is only one reflected wave in this case.

The formulation we gave in CHI makes no assumptions as to the form of z) to the left of the parallel

plates. The convergence study in sec 2, of the present paper gives us conditions for one, two, etc., re-

flected waves.
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