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of N which satisfy this condition, are found by a trial and error process from Eqs. (8)

and (9). It is interesting to note that Eq. (9), for x = ±a, is divergent for all values

of N except those corresponding to the modes of vibration satisfying the second boundary

condition.

In Fig. 1, X/Ai , has been plotted as a function of x/a for various values of N, the

thickly-drawn curves representing the "standing-wave" patterns for the fundamental

mode and its first two overtones. It was sufficient to show the deflection variations over

only one half the length of the ellipsoid because there is symmetry about the plane

x = 0.

The frequencies of resonance for the ellipsoid may thus be expressed as

/*. = ^ (-) 7 where n ~ 1.38, 3.49, 5.33, (10)

indicating the inharmonic nature of the overtones. However, a comparison between

Eqs. (3) and (10) reveals that the consecutive overtones of the vibrating ellipsoid have

ratios closer and closer to the ratios of adjacent odd integers as the value of n increases.
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THE LEAST SQUARES SOLUTION FOR A SET OF

COMPLEX LINEAR EQUATIONS*

By R. TURETSKY (Aberdeen Proving Ground)

Consider the set of m observational equations whose matrix representation is

Az ~ w, (1)

where A is an m X n (m > n) matrix of rank n whose elements are prescribed complex

quantities, while w is an m X 1 matrix. We seek that z (an n X 1 matrix) which mini-

mizes the sum of the squares of the absolute values of the components of the vector

Az — w.

Set A = B + iC, z = x + iy, w = u + iv, where B, C, x, y, u, and v are real matrices.

Then Eq. (1) is equivalent to

(2)

This is the matrix representation for a set of real observational equations. To obtain

the normal equations,1 we multiply on the left by the transpose of the coefficient matrix

*Received July 28, 1950.
'See Whittaker and Robinson, Calculus of observations, Chapter IX.
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of the unknowns. Letting primes denote the transpose, there results

(3)

where

P = B'B + C'C
and (4)

Q = C'B — B'C

It will be noted that P is symmetric while Q is skew-symmetric, which greatly facilitates

the computation.

The solution of Eq. (3) is

0-C ~:)T DO
Ordinarily the inverse of the 2w X 2n matrix

(p\Q Pi

is obtained directly. However, recourse may be had to its special structure to note that

the inverse is of the form

where

R = (P + QP-'QT'
(6)

S = P~lQR

The computation is thus simplified, since we have to compute the inverses of two n X n

matrices rather than that of one 2n X 2n matrix. Moreover, advantage can be taken

of the fact that R is symmetric while S is skew-symmetric.

Finally, the multiplication of

by
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required on the right hand side of Eq. (5) leads to the matrix

(' ")\U T)

where

T = RB' - sC'

U = RC' + sB'

Multiplication by a 2m X 2n matrix is thus required only in the final step.

(7)


