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-NOTES-

ROTATION OF AN INFINITE PLANE LAMINA: BOUNDARY LAYER GROWTH:

MOTION STARTED IMPULSIVELY FROM REST*

By SWAMI DAYAL NIGAM (Agra College, Agra, India)

1. Introduction. T. v. Karman1 has solved the problem of rotation of an infinite plane

lamina in a viscous fluid. He assumes that the motion is steady and the lamina rotates

with a constant angular velocity 9. about the axis r — 0. He has found exact solutions of

the equations of motion which satisfy all the boundary conditions of the problem. The

axial velocity does not vanish at infinity, but tends to a finite negative limit, which signi-

fies a steady axial flow towards the rotating lamina, v. Karman interprets that it is

necessary to preserve continuity, since the rotating lamina acts like a centrifugal fan,

the fluid moving radially outwards, especially near the lamina.

In the present note I have discussed the growth of motion in the earlier stages of its

development caused by an infinite plane lamina which at t = 0 is suddenly made to rotate

with a constant angular spin 0 about the axis r = 0. There grows a boundary layer of

thickness proportional to the square root of time, adjacent to the rotating lamina which

initially has a zero thickness.

We start with the equations of motion in cylindrical coordinates and substitute in

them expressions for u, v, w and p somewhat similar to those used by v. Karman. Then

applying the approximations of the boundary layer theory, we integrate them analytically,

satisfying all the boundary conditions required by the problem. The solutions have a

serious limitation in that they give initial motion only. They give no information regard-

ing the time after which the steady state is reached.

2. Equations of motion. The equations of motion in cylindrical coordinates with

terms of azimuthal variation omitted are

T| 1 du u d2u~I 1 dp _ du du
1 dr2 r dr r2 dz2 J p dr dt U dr

[~ d2v 1 dv V d2v~\
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f d2W , 1 dw . d2W~\ 1 dp dw , dw , dw
v\ —2 + ~  n=T7 + w!T + ^T"L dr r dr dz J p dz dt dr dz

where u, v, w and p are the radial, azimuthal, and axial components of velocity and press-

ure respectively. The equation of continuity is

ir (™) + dz ̂  = 0 (2)

*Received Oct. 14, 1949.

'Goldstein, Modern developments in fluid dynamics, vol. I, The Clarendon Press, Oxford, 1938, p. 111.
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We now let

u = tfrtf(v)

v = firgr(ij)

(3)
w = -4v/2tff/2h(r,)

p = 2vpQ,2tp(rj)

where

V = z/2{vt)1'2 (4)

During early stages of motion when t is small (or in boundary layer theory terminol-

ogy: when the thickness of the boundary layer is small), we may neglect the terms in the

equations of motion containing higher orders of t. Therefore by omitting terms of order t2

in the equations of motion and continuity, we get to a first order of approximation, the

following equations2

f" + 2„/' - 4/ = -4</2 = -p" (5)

g" + 2V g' = 0 (6)

h" + 2vh' - &h = -p' (7)

f=h' (8)

3. Solutions of the equations. From (6) we get

g = [1 - erf 77] = erfc (9)

With this solution for g the general solution of Eq. (5) may be expressed3

/ = A(l + 2-q2) + -B[(l + 2t)2)erfc 77 — 2ir~1/2rte~~'1 ] + 2(ir~1/2e~' — 77 erfc ij)2 (10)

The boundary condition that / = 0 at r; = 0 and ?j = gives

A = 0, B = 2/tt

The function h is obtained by a quadrature of /, and the function p by the double quadra-

ture of 4g2. The final analytic expressions for /, h and p, are

/ = — [(1 + 2tj2)erfc ij — 2x_1/27je"",> ] — 2(ir~1/2e~v — 17 erfc rj)2 (11)
IT

h = [(3?) + 2if)erfc ij — 27r"I/2(l + r2)e~"'] — ^ (t"1/2e"'' — 17 erfc v)2

+ sw--{l- 2"! + ')•
2Goldstein, loc. cit. p. 183. A similar approximation has been made there.

3The author is indebted to the referee of this paper for the particular solution to Eq. (5).

(12)
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v = (1 + 2y2)(erfc ri)2 — 4?2 e~"'erfc 17 — - e~2"' + 4^/2 v erfc 2W2J — 1 + -
7T 7T 7T \ 7T,

(13)

H—172 f 2I/2 + 1^ + const.
7T \7T /

Note that there is an anomaly in the behaviour of the pressure which makes it approach

infinity as and precludes the specification of the constant in the last quadrature

by a reasonable physical boundary condition. The anomaly is due to the acceleration of

the infinite mass of fluid.

The functions g, f, and h are given in Fig. 1.

1.0 1.5

Fig. 1. The flow functions.

4. Stream function. A stream function may be defined by the equations

1 d*
u = -r- ,

r az

(14)
1 df

w = - — ,
r dr

whence the stream function may be expressed

= — 2vn Q2<3/V/i(tj) .

This gives stream surfaces which are surfaces of revolution.

In conclusion I express a deep sense of gratitude to Prof. M. Ray, D.Sc. for his kind

help in preparation of this note.


