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A NOTE ON BATEMAN'S VARIATIONAL PRINCIPLE
FOR COMPRESSIBLE FLUID FLOW*

By CHI-TEH WANG {New York University)

1. Introduction. The variational principle for a compressible fluid was first studied by

Hargreaves [1], who showed that the integrand of the variational integral is a linear

function of the pressure. A variational principle for an inviscid compressible fluid was

formulated by Bateman [2]. A study of Bateman's work, however, shows that his varia-

tional principle is applicable only when the domain of the flow is finite. A large class

of aerodynamic problems require the study of a flow field which extends to infinity. In

such cases, Bateman's principle must be modified. This fact has already been noted in

references [3] and [4], in which the Rayleigh-Ritz method was used in the approximate

solution of compressible flows past arbitrary bodies. The formulation of a suitable varia-

tional principle in these references was however carried out in connection with the

particular problems considered, so that the derivation appears to be in a rather restricted

form. In this note, a more general formulation is presented and the resulting variational

integral is written in a more general form. The author is indebted to Professor K. 0.

Friedrichs for his kind suggestions and discussions.

2. Bateman's variational principle. For steady, inviscid, irrotational compressible

flow, the governing differential equation is

[«' - (£)'[

d'2<t> dcj) d(j> d2<ft

dXi dX{ dXi dXj dXi dXj
= o, (1)

where

T
a - «.A*- 1.2.3). (2)

In Eqs. (1) and (2), a is the velocity of sound, <£ is the velocity potential, x{ are the

Cartesian coordinates, y is the ratio of specific heats, qm is the maximum attainable

velocity in the flow. A repetition of the subscripts in the above expression indicates

summation.

Bateman's problem is to show that the variational integral

rt = f p(4>) dv (3)
J V

has Eq. (1) as its Euler's equation, where p is the pressure, d V is the elementary volume,

and the integration is extended to the whole volume of the fluid.

For barometric fluid, p may be written as

p = A + Bpy,

where p is the density, and A, B are constants. In terms of <t>, one obtains

<4'
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where

C = B~Wiy~1\y - l/2y)k and k = 7/(7 - 1).

With the expression of p as given by (4), the first variation of 7i may be carried out

with respect to </> and the condition SIX = 0 leads to

where 5 indicates first variation, d/dn is the derivative in the inward normal direction,

51 + S2 is the surface that encloses the volume V, <St denotes the stream surface and

52 denotes the boundary surface at infinity. Since 8<f> is arbitrary in V, the condition

SI 1 = 0 gives the continuity equation

d / d$_\

dXi \ dxj
0

as the Euler's equation of the variational integral (3).

If the domain is finite and the boundary surfaces are stream surfaces, no condition

has to be imposed on <j> and d<t>/dn = 0 follows as the natural boundary condition. If

the domain is infinite, d<j>/dn = 0 on S1 can still be concluded from the condition

JSl §</> p(d<t>/dn) dS = 0. At infinity 4> must be prescribed, and since S2 is an infinite

surface, the vanishing of 57, requires that <f> must be prescribed to an order of magnitude

so that fs, S4> p(d<t>/dri) ds = 0. This however is not the case in fluid dynamics problems.

To clarify this point, let us consider the two-dimensional case. At infinity, the ad-

mitted velocity potential is required to behave as follows

<t> = Ur cos 6 — ~ 6 + (U + A^)r~l cos 6 + A2r~x sin 8 + 0(r-2), (6)
Zt

where r, d are the polar coordinates, K is the strength of circulation A, and A2 are to

be determined and 0(r~2) represents terms of the order 1/r2 or higher. Thus

h<t> = cos 6 + 5A2r_1 sin 8 + 0(r~2),

where SAX and oA2 are arbitrary. Writing p and d<f>/dn in terms of 0 as given in (6) and

integrating, one obtains

l, S4">tdS = Lo S* P ̂  r de\.„ = -PoUtSA, , (7)

where p0 is the density at infinity, s, is the boundary curve and ds is the elementary

length. The vanishing of SI^ then requires that p0 U must be zero because 5/1, is arbitrary.

This however is not possible. It is therefore clear that Bateman's variational principle

is not applicable to flows in which the domain extends to infinity. The appropriate

principle in this case should be

S J p(<f>) dS + = 0, (8)

where S is the surface of the domain and dS is the elementary surface.

3. A variational principle for steady, irrotational compressible flow with infinite do-

main. In applying the Rayleigh-Ritz method to the approximate solution of compressible
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flow problems, it is found that for most problems the velocity potential <j> may be written

in the form

4> — 0i + 02 , (9)

where </>, denotes the velocity potential of the corresponding incompressible flow and

<t>2 denotes the remaining part due to the compressibility effect. Substituting 4> as given

by (9) into Eq. (4) and carrying out the expansion, the expression for p may be written

in the following form

a j. r(f? ^ d<^1 d<f>2 _i_ nmp=A + C[qm- — ~) — ' W

Since <£, is a definite function, 6<£x is zero, and hence

•/,[*+4*<">
f d<t>! d<t>2 f d</>! f d20,

o / Po 7— av = — o02 p0 -— ab — / 602 Po r—r— a V
Jv dXi dXi JSl+S, dn Jv dXi dXi

(12)

The last step in (12) is obtained because 4>i satisfied the Laplace equation d2<t>1/dxidxi =

0 and on the stream surface St , d<f>i/dn = 0 and thus J,5, /dn) dS = 0.

As long as the Euler equation of a variational integral is not affected, it is permissible

to change the original integral by adding or subtracting other integrals. Since (11) is

zero and (12) gives only a boundary integral, the following variational integral will have

the same Euler's equation as Bateman's integral (4).

. I - [, + - ffa g)']} (IV + I £ <7. (.3)

Noting that [A + C(q2m — (d<j}1/dxi)(dcl)l/dxi)'c] = p(<j>:) and integrating the second

integral in (13) by Green's formula, (13) becomes

h = fr W) - p(0.)] dV - Js <t>2p0 dS. (14)

In the above expression, p (</>,) subtracted thusly insures the boundedness of I2 . The

last integral in (14) must be subtracted so that the boundary integral vanishes when

the first variation of (14) is taken. In the two-dimensional case, the first variation of

the last integral in (14) indeed reduces to (7).

In references [2]-[9], variational methods have been carried out to solve compressible

flow problems following the Rayleigh-Ritz, the Galerkin, and Biezieno-Koch procedures.

In all the problems solved, excellent results were obtained. In the case of the Galerkin

method and the Biezieno-Koch method, the formulation of a variational principle is not

necessary. However, in performing the numerical computation for potential flows past

arbitrary bodies, it was found that the Rayleigh-Ritz method requires the least amount

of labor.
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ON A GEOMETRICAL METHOD OF DERIVING THREE-DIMENSIONAL
HARMONIC FLOWS FROM TWO-DIMENSIONAL ONES*

By AUREL WINTNER (The Johns Hopkins University)

The Flow Operators 0. Let D be a domain in a (w,w)-plane, E a domain in an (x,y,z)-

space, and let <p = <p(u, v), \p = ip(x, y, z) denote (real-valued and regular) solutions of

A?<p = 0, A= 0 on D, E, respectively, where A2 and A3 denote the two- and three-

dimensional euclidean Laplace operators,

A2 = d2/du + d2/dv2 and A3 = d2/dx2 + d2/dy2 + d2/dz\ (1)

All harmonic functions <p are accessible in principle, since all of them are given by

<p(u, v) = Rex{w), where x is any function which is regular-analytic in w = u + iv on

D. In contrast, there does not exist anything like this rule for the harmonic functions

yp{x, y, z) on a three-dimensional E. Hence it is natural to ask for flow operators, say

12 = P-(D), which, from every regular solution <p = <p(u, v) of A2<p = 0 on a two-dimen-

sional (w,y)-domain D, will manufacture a regular solution,

Hx, V, z) = v), (2)

of A3\p — 0 on a three-dimensional (x,y,z)-domain E = E(D). The latter should not

depend on the particular choice of the function <p(u, v), but merely on the operator

fi = fi(D) and on the domain D on which <p(u, v) is supposed to be harmonic.

A trivial instance of such "harmonic flow operators" U is supplied by the cylindrical

flow which, from a given <p(u, v), manufactures the corresponding y, z) as follows:

i{x, y, z) = <p{x, y). (3)

In fact, (3) is of the type (2), since A3\//(x, y, z) = A2\p(x, y) if d2\p/dz2 = 0; cf. (1). The

*Received June 30, 1950.


