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SOURCE-SUPERPOSITION METHOD OF SOLUTION OF
A PERIODICALLY OSCILLATING WING AT SUPERSONIC SPEEDS*

BT

H. J. STEWART and TING-YI LI

California Institute of Technology

Introduction and summary. In a recent paper Evvard (Ref. 1) discussed the linearized

theory of the non-steady motion of three dimensional wings by methods which he had

previously developed for the treatment of the corresponding steady flow problems

(Refs. 2 and 3). Evvard represented the wing by a distribution of sources, and the

important result of his steady state theory concerned the determination of the flow in

a region influenced by a subsonic leading edge or wing tip. He showed that the influence

of the flow around this subsonic edge of a flat lifting wing on the velocity potential at

X

Fig. 1. Geometry of Wing.

a point within the region of influence of this edge is exactly equal to and of opposite

sign to the contribution to the potential from the sources distributed over a simply

determined region of the wing. In his paper on non-steady motion, he was able by similar

methods to determine an explicit formula for the velocity potential; however he could

not express the results in a similar, "equivalent area", form.

The present paper is concerned with the same problem of the non-steady lift of

finite wings at supersonic speeds, particularly in regions which are influenced by subsonic

leading edges or wing tips. It is shown that the simple "equivalent area" theorem de-

veloped by Evvard for the steady state case is also valid for oscillating wings. The

*Received December 30, 1949.
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theorem is not extended to arbitrary non-steady motions, and an example where the

theorem in this simple form is apparently not valid is demonstrated.

The basic differential equation and boundary conditions. Consider a wing in a steady

supersonic flow of velocity U and Mach number M in the direction of the x-axis. Then

the velocity potential <p which governs any small, possibly non-steady, disturbance pro-

duced by the wing satisfies the linearized differential equation

i ,2U&p_ ,(&_ i^_3V m
a2 df + a2 dx dt + \ a2 / dx2 dy2 + dz2' ^ '

where (x, y, z) are cartesian coordinates, t is the time variable and a is the speed of sound

in the undisturbed flow so that U = Ma. The wing is assumed to be near the plane

z = 0.

With the approximation of the linear equation, it is permissible to replace the

boundary conditions at the point (x, y, z) on the actual wing surface by the same boundary

conditions applied on the plane z = 0 at the point (x, y, 0). In order to express the

boundary conditions it is necessary in general to divide the wing surface into two different

types of regions (see Fig. 1). The origin of the coordinate system is taken at the point

0 where the Mach line Ov is tangent to the leading edge. The leading edge is thus divided

into two segments, the segment OA which is defined by x = (y) or y = y, (x) and is

a supersonic leading edge and the segment OS which is defined by x = x2(y) or y — y2(x)

and is a subsonic leading edge. As a matter of convenience it is assumed that the trailing

edge, x = x3 (y), is a supersonic trailing edge where the Kutta condition need not apply.

The Mach line Ou then divides the wing into two regions. Region I, which is bounded

by a; = x^y), x = x3(y) and Ou, may be referred to as a purely supersonic region. Region

II, which is bounded by a: = x2(y), x = x3(y) and Ou may be referred to as a mixed

supersonic region (Ref. 4).

At any point on the surface of the wing the flow must be tangential to the surface

at any instant. This boundary condition, linearized, and applied to an oscillating condi-

tion is

•\
-J1 = wT(x, y, + 0) exp {ivt) = UkT{x, y, + 0) exp (ivt), (2)
dz

dz
= wB(x, y, — 0) exp (ivt) — —UAB(x, y, — 0) exp (ivt), (2a)

where, except for the time factor, w(x, y, z) is the z component of the velocity and A

is the effective slope of the streamline and v is the frequency of oscillation. The subscript

T refers to the top of the wing and the subscript B refers to the bottom of the wing. In

general wT and wB (or AT and AB) need not be related. A sign convention for Ar and As ,

adopted in Ref. 1 is also used here and is shown in Fig. 2.

From the definition of a purely supersonic region, there can be no disturbance in the

flow ahead of the line x = x^y). For any point P in Region I the velocity w is thus

known at every point on the plane z = 0 in the forward Mach cone from the point P.

On the wing w is given by Eq. 2 or Eq. 2a, ahead of the wing w = 0.

For a point Q in Region II conditions are more complex. As before, the velocity w

is given for that portion of the plane z = 0 in the forward Mach cone from Q which is



1951] PERIODICALLY OSCILLATING WING AT SUPERSONIC SPEEDS 33

covered by the wing by Eq. 2 or 2a. Also w = 0 and <p = 0 ahead of the line segments

x = x1(y) and Ov. Since x = x2(y) is a subsonic leading edge, there is, in general, an in-

teraction between the upper and lower surfaces which produces an upwash across the

plane z = 0 in Region III which is bounded by x = x2(y) and (to. This upwash cannot,

in general, be specified in advance. For this region the pressure must be continuous

across the plane z = 0 so the linearized boundary condition for this region is thus

(3)at ox dt dx

The boundary conditions on the plane z = 0 for a point Q in Region II are thus of a

mixed type, involving w over the wing, pressure over Region III and no disturbance

ahead of the lines Ov and x = a\(y).

u

Fig. 2. Sign convention of A's.

Elementary oscillating source potential. Elementary solutions of Eq. 1 which can be

superimposed to obtain more complex solutions can easily be obtained by the method

of separation of variables. For this purpose it is convenient to introduce the following

coordinate transformation:

r=[x2- fiV + z2)]1/2

W+i!)"1"I -
]-l/2

'

03 = tan (z/y), r = tfa[t -

(4)

where /32 = M2 — 1.

These space variables were found useful in the treatment of steady conical flows (Ref. 5).

The time transformation is similar to a combined Lorentz and Galilean transformation

and has been used by Miles (Ref. 6). In these coordinates Eq. 1 is

n2

=r2^ I 9,^ + 1
dr2 dr2 + dr + dfj.

(1 — 2\ ̂ 1 j_ 1 d2y> . .
" M ) a.. J + i _ „2 3..2- (5)dy.J 1 — yu da>

This is identical with the form of the classical wave equation in spherical coordinates.
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The solutions of Eq. 5, obtained by the method of separation of variables are

(cos mu) (P:GO) (r-1/2J_n_1/2(Zr)j

¥> = I] AlmA X (\ ? exp (±Ut), (6)
(sin mw) (0:W) ir'U2Jn+lJlr) )

where Z, m and n are the separation parameters. Pn(jx) and QTAp) are Associated Legendre

functions and J,(n+U2)(lr) is a Bessel function of order ±(n + 1/2).

For m = n = 0, a simple solution of Eq. 6 is

Vl = Ar~1/2J-i/t(lr) exp (ilr). (7)

If r is replaced by the physical time variable from Eq. 4, the Bessel function is written

in the trigonometric form and I is eliminated by the relation v = Iffa, Eq. 7 becomes

Ai (vr \ X. / Ux\
•" = - coswexp A'-w?) (8)

where At is a new arbitrary constant. Equation 8 may be considered as defining a super-

sonic oscillating source. This basic solution has been used in this form by Miles (Ref. 7).

If the basic solutions used by Garrick and Rubinow (Ref. 4) or by Evvard (Ref. 1) are

applied to oscillating problems, they can be reduced to this same form. It may be noted

that for v — 0 Eq. 8 reduces to the usual steady state source potential. The complete

velocity potential field for an oscillating source is defined by Eq. 8 in the downstream

Mach cone and as zero outside the Mach cone.

Velocity potential of an oscillating wing. For a point in the purely supersonic region

the velocity potential due to the wing can readily be obtained by replacing the wing

z

(?,y,z)

y i,  - (x-pz,y,o)

Fig. 3. Singularities or sources in the x, y plane, that affect conditions at (x, y, z) at instant t.

by a distribution of sources over the wing surface. If the region of dependence of a given

point includes only that portion of the wing which is purely supersonic, the velocity

potential for z > 0 due to the source distribution is thus

Hx, y, z, t) = /J Ar(V) exp ?)]} cos (^) ^ (9)

where

n = [(* - f)2 - fi2(y - v)2 - fcT2. (10)

Here AT(£, rj) is the source strength per unit area at the coordinate (£, on the wing

surface. The region of dependence, which determines the region of integration on the

wing surface, is bounded on the downstream side by the line r, = 0 (Fig. 3).
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If the source strength AT(ij, 17) can be chosen so the boundary conditions for the

purely supersonic region are satisfied, Eq. 9 is the proper solution. In order to do this

it is convenient to replace the integration variable 17 by

Ky ~ v) = ~r3 sin 6, (11)

where

r2 = [(* - £)2 - W2. (12)

With this notation Eq. 9 becomes

H%, V, z, t) = 1 exp (ivt) exp 0 ~ £>] $

X J y + ^ sin ej cos cos 0^ dd,

(13)

where & is the least value of £ on the leading edge. Since

dr2 ffz

dz r,'

3$
= —ttAt(x — fiz, y) exp (ivt)

az

(14)

l»x—pz r 'ivjj
- pz exp (ivt) exp [-^2 (a: - £)

x y +1 Bi° °)cos (fa cos').

i« (15)
I 2

dd.

If the function A r(£, 17) is continuous in the neighborhood of the point (x, y), the magni-

tude of the double integral in Eq. 15 is finite for sufficiently small values of z; so

f d$\
lim I— j = — tAt(x, y) exp (ivt). (16)
e-* + 0 \uZ /

By comparison of Eqs. 16 and 2, it is seen that

At(x, y) = -- wT(x, y, + 0) = AT(x, y, + 0). (17)
7T 7T

For a point below the wing, z < 0, a similar analysis shows that

AB(x, y) = - wB(x, y, - 0) = —— \B(x, y, - 0) (17a)
7T IT

The required source strength, A (x, y) in the plane z = 0 is thus completely determined

for any point in the purely supersonic region. On the wing A(x, y) is given by Eq. 17 or

Eq. 17a. Ahead of the wing the disturbance (d$/dz)2_0 is zero; so A(x, y) = 0 in this

region. With these values of A(x, y), Eq. 9 defines the velocity potential and thus the

velocity components and the pressure on the wing. This analysis was given in a similar

form by Miles in Ref. 6 (some errors in his presentation were corrected in Ref. 7).
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The results of this analysis may be summarized in the following two theorems:

Theorem 1. The strength of the source at any point at any instant on the surface of

an oscillating wing is linearly dependent on the downwash at that point and at that

instant and is independent of the downwash of the neighboring points.

Theorem 2. The velocity potential at instant t, at a point P in the purely supersonic

region of the surface of a three-dimensional oscillating wing (Fig. 1) may be computed by

$(x, y, ± 0, t) = —^ exp (ivt) J exp j^-tV (x -J)]

(9a)

r+«,-f>„ Urfc v)\ cos {(y/ffaMx - Q' - ?(y - ,)»r1*-"" I"'"" cos \W(fa)[{x - & - 0\y - yf]U2\ ,
W, J [{x - *]2 - "2{y - ")2]1/2

top

X

where z = ±0 refers to the surface of the wing.

A mixed supersonic region may be converted into a "psuedo-purely supersonic region"

by Eward's procedure of inserting a diaphragm into Region III of Fig. 1 which is an

extension of the wing having the following properties:

a) It does not change the flow over the wing

b) It sustains no lift

With this supposition, the top and bottom surfaces of the wing may again be considered

to be independent so that Eq. 9a applies; however the diaphragm slope is in general an

unknown function which must be determined.

A part of the wing in Fig. 1 is shown enlarged in Fig. 4. In order to compute the

v=v,(u)
x = xi(y)

(xo,yD)

K,vd)

(x,y)

(Uw,vw)
X

Fig. 4. A portion of the wing in Figure 1

velocity potential at the point Q, it is convenient to first consider a point D located on

the trace of the upstream facing Mach cone from Q, in the diaphragm plane. Let the

unknown downwash and the effective slope of the streamline on the top surface of the
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diaphragm be wDT(xD , yD) and ADT(xD , yD) respectively. Then, by Eqs. 9 and 17, it is

found that

, Vn , + 0, t) = — - exp (ivt)
7T

X
ff ft \ cos {(v/p2a)[(xD - £)2 - 0\yD - y)2]l/2\ ,

JJ Wr(k' V> [(*„ - f)2 - p\yD - jj)2]1/2 exp \iv(U/p2a2)(xD - £)]Ck ^
8 w

(18)

— - exp (ivt)
IT

v /T (t x cos {(y//3 a)[(x D - £) - p (yD - y) ) } , ,
X JJ wDt(H, n) [{XD _ Qi _ -,{yD _ ^ exp mu/^){xd _ {)] ̂  dV)

Sd

where Sw is the region of the wing and SD is the region of the diaphragm included in

the upstream facing Mach cone from D(xd , yD , + 0), at instant t. The regions of inte-

gration Sw and SD are most easily expressed in terms of the oblique u, v coordinates

defined as follows:

« = ^ ft - Pv), ? = (P + u),

or (19)

v = Yp ft + Pv), v = (t> - u),

With these coordinate transformations, the point (xD , yD) is transformed into (uD , vD),

where

M , /3 ,
Ud = 28 ^Xd ~~ Xd = M ^Vd U'

M , , „ . 1 ,
y° = 20 ^ Vd ^ M (Vd ~~ Ud)

(20)

The surface integral $D7. in Eq. 18 will now be integrated in the u, v plane. Then,

Eq. 18 becomes

du1 rD
$dt(Ud , VD , + o, t) = jtM exp (ivi> Jo (uB~ m)1/2 exp [(«V/^a)(w0 — u)]

 M/3a)[(MP — u){vD

(vD — i>)1/2 exp [(iv/0a)(vD — i>)]

r(u' Wr(u, v) cos {(2v/Mda)[(uD - u)(vD - v)]W2, ,
X  — ~/2 U- ..M   (''V

J (u)

(21)
du1 .

7xM 8Xp J0 (uD — u)W2 exp [(iv/fla)(uD — u)]

rD WDt(u, V) cos {(2v/Mpa)[(uD — u)(vD — t>)]'/2} ,

i„(«) (fc - f)I/2 exp [(iv/Pa)(vD — »)]

where wT(u, v) is the downwash on the top surface of the wing, wDt(u, v) is the down-
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wash on the top surface of the diaphragm, the area bounded by 0 < u < uD and v, (u) <

v < v2(u) is Sw , and the area bounded by 0 < u < uD and v2(u) < v < vD is SD (Fig. 4).

Similarly, for the corresponding point D(ud , vD , —0, t) on the bottom surface of

the diaphragm, it is seen that

1 .s rD du1
$db(ud ,vD,—0,t) = exp (ivt) J j———

u)1/2 exp [(iv/Pa)(uD — v)]

Mf3a) [(uD — u)(vr

) (Vd — v)1/2 exp [(w/Pa)(vD — v)]

x wB(u, V) cos {(2v/Mpd){{uD — u)(vD - t>)]1/2, ^

(w

+

(22)
du

\ 1/2
1 . fUD

ttM eX^ J0 (ufl — w)1/2 exp [{iv/ila)(uD — u)]

fv Vt

f"D wD„(u, V) cos {(2v/M/3a)[(iiD - u)(vD - v)]1/2\ ,

,<„) (VD — v)1/2 exp [(iv/pa){vD — w)]

Off the wing, the downwash must be continuous. In terms of the effective slopes of

the stream lines, this condition is, with the sign convention of Fig. 2,

ADt(u,v) = —A Db{u,v) = A D(u,v). (23)

From Eq. 3 it is found that in Region III

$dt{x, y, + 0, t) = y, - 0, t) + F(x - Ut, y), (24)

where F is an integration function. The foremost Mach cone (Fig. 4) from the origin,

0, represents a line of infinitesimal disturbance along which F(x — Ut, y) can be set

equal to zero at all times. F remains zero along y = constant lines for values of x not in-

tercepted by the wing (Ref. 1). Therefore, in Eq. 24, F may be put to zero. Behind a

trailing edge, F may be different from zero and the theory must be modified. Then, from

Eqs. 21, 22, 23 and 24 (with F = 0), it is seen that

du1 rD 

2 J0 (Ud u)in exp [(iv/fia)(uD — u)]

X/va^.u) L — -P y--;  -"j «-/ j ~ \_\wu "-y \y if v j j i 7

/.. .A 1/2   rt: in-\f M dv
1 («)

r"(u> [AB(u, v) — At(u, ;;)] cos \{2v / M fia)[(uD — u)(vB — i>)1'/2>

(vD — v)1/2 exp [(iv//3a)(vD — v)]

= r 
Jo (Md

du
(25)

u) exp [(iv/fia)(uD — u)}

['" AD(u, v) cos {(2v/Ml3d)[(uD — u)(vD - v)]W2\ ,

J„(u) (VD — v)1/2 exp [(iv/Pa){vD — y)]

When v — 0, this reduces to

l(u) AB(u, v) — AT(u, v)1 r du f -
2 J„ (uD - u)'1/2 J,lM (vD-v)1/2 dV

- [ "" du f'D AD(u, v)
Jo (Ud - U)l/2 Jv,w (vD - v)1/2 dV-

(26)
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Inasmuch as the limits of integration of the w-integrals are the same for all values of

uD and the integrals are "faltung" integrals, the two integrals with respect to v may

be equated along lines of constant u that extends across the wing and the diaphragm

(Fig. 4). Therefore,

f" A „(»,■>) _ [-« A .(y) - Af(yji ^
(pD - v) J,lM 2(vd - v)

This is the fundamental result of Ref. 2 and also is the basic equation of Ref. 3. The

above argument is valid because the terms containing uD do not appear in the v-integrals,

and hence Eq. 27 is true for all uD's on the line v = vD .

The parallel treatment of Eq. 25 would be possible if the terms containing {uD — u)

(vD — v) can be separated as in Eq. 26, under the integral signs. The present treatment

represents a first attempt towards this end. The isolation of terms containing (uD — u)

from terms containing (vD — v) such that the ^-integral is free of the (uD — u) factor,

may be accomplished by the following procedures.

The term {(vD — v) (uD — u) j1/2 vanishes at (un , vD), therefore Eq. 25 actually

should be

lim f
«—*o Jo

du

(uD — u)1 2 exp [{iv/fia)(uD — u)]

X / 17"—"-n-^dv
J Vi(u)

[Ab(m, v) — Ar(u, «)] cos {(2v/M/3a)[(uD — u)(vD — t>)]'/2)

2(vd — v)1/2 exp [(iv//3a)(vD — »)]

(25a)

 du 

_ Jo (uD - w)1/2 exp [(iv/Pa)(uD — u)]
6l-»0

Ad(m, v) cos {(2v/Mpg)[(uD — u)(vD — v)]1/2\ ,

J..M (Pd - v)l/2 exp [(iv/$a)(yD - v)]

The nature of the functions AB , Ar and \D must be such as to insure the existence of

the improper integrals. Thus, except for the singularity (uD , vD); in the finite integration

regions, the integrands are defined and bounded everywhere. Now, the circular functions

are defined by power series; in particular, the power series expansion of the cosine func-

tion is

cos*= (28)

The series (28) has the following properties (Ref. 8):

(1) It converges absolutely for all values of z (real and complex),

(2) It converges uniformly in any bounded domain of values of z, and consequently,

(3) It is a continuous function of z for all values of z.

Because of the uniform continuity, the cosine function in Eq. 25a may be expanded

in an infinite series and the orders of integration and summation may be inverted.

Thus
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y. (-)n(v/0a)2n(l/M)2\U2

hi n\T(n + 1/2)

v rD- (Up - tt)-v2 rfM f'U> [Ab(m, g) - Ar(«, a)l(*;D - v)n'1/2

x ™ Jo exp l(iv//3a)(uB - u)] J., o ___

= Z

exp [(w//3a)(MD - m)] J„m 2 exp [(iv//3a)(vD - t>)]

(-)"(v/i3a)2"(l/M)2V/2

n!r(n + 1/2)

(25b)

r- («B - M)-'/2 rD— ad(m, v)(vb - ^r-1/2

™ i0 exp [(iv/$a){uD - w)] (i_o J.,m exp [{iv/fia){vD — vj\ V'

With the conviction that the improper integrals under question exist, the "lim" signs

may be left out.

In Eq. 25b, unlike in Eq. 25a, the v-integrals do not contain uD terms, and the problem

has been reduced to one analogous to that of Eq. 26. Now, it may be pointed out that

since Eq. 25a is derived by equating the velocity potential on the top and bottom sur-

faces of the diaphragm in Region III (Fig. 4), the two sides of Eq. 25b may be con-

veniently considered as power series in (1 /M) of a potential function satisfying the

original linear differential equation, Eq. 1; consequently corresponding terms may be

equated.

Therefore, for constant value of vD , with n being any positive integer,

f"D AD(u, v)(vp — v) , __ j"'( [AB(u, v) — A?-(m, v)](vD — v) , (0<X\

Jv.M exp [(iv/t8a)(vD - v)] JtlM 2 exp [(iv/fia)(vD — v)]

In this system of simultaneous integral equations AB(u, v) and AT(u, v) are known

while Ad(m, v) is unknown. Consider, say, (N + 1) integral equations corresponding to

n = 0, 1, 2, • • ■ N. (Of course, in the limit, N —>&> ). In order that these (.¥ + 1) simul-

taneous equations may determine one unknown AD , it is necessary that the (N + 1)

equations are not mutually independent, that is, the (N + 1) equations are reducible

to one equation. In fact, this is true for the given system. For instance, when n — 1,

it is obtained from Eq. 29 that

l"D AD(u, v){vD - v)l/2 dv = ri(u) [Ab(m, v) — A?-(u, t>)1(yB - v)U2 dv ,

J..M exp [(iv/fia){vD - y)] 2 exp [(iv//3a)(vD — v)]

Carry out a differentiation of Eq. 30 with respect to vD . The result of this differentiation

plus (iv/^a) times Eq. 30 yields

f'D AD(u, v){vD — v)~1/2 dv = ra(u) [Ab(m, v) - AT(u, v)](vD — v)~1/2 dv . .

J,.m exp [(iv/i3d)(vD - v)] Jvi(u) 2 exp [iiv/^a)(vD — v)]

which is Eq. 29 for n — 0. Therefore, when AD satisfies Eq. 30, it also satisfies Eq. 31.

This argument can be carried on, by induction, to include the case for every n. Therefore,

the system given by Eq. 29 is consistent and determines an unique function AD .

For the determination of the contribution of the diaphragm on the velocity potential

at a point Q(uw , i'w , ± 0) on the top or bottom surface of the wing, it is not necessary
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to solve the integral equation, Eq. 29, explicitly. Let this contribution be called

$wD(uw , vw , ± 0, 0 (see Fig. 4). Then,

U , r' duu r
, VW , ± 0, t) = exp (ivt) J

X

(■uw — u)1/2 exp [(iv/pd)(uw — u)]

rw AD(u,v) cos {
/ L. _ 1/2

""w AD(u, v) cos {(2v/Mpa)[(iiw — u)(vw — v)]l/2} dv

(vw — v) ' exp [(iv/fia)(vw — »)]

(32)

= ^ exp (ivt) t (-)"("/0a)2n(l/M)2nTrU2

tM P { } ti n!r(n + 1/2)

X
r' («y - m)"~1/2 rvw

J0 exp [(iv/fia)(uw — u)] J„M

"w Ad(m, z>)(?y — v)n 1/2

exp [(iv/Pa)(vw — t»)] '

where u' is the w-coordinate of the intersection point of the curves: v — v2(u) and v =

vw , i.e. v2(u') = vw ■

By comparing

f'w AD(u, v)(vw ~ v)"-1/2 , f"D AD(u, v){vD - v)"-1/2

J..(u> exp [(iv//3a)(vw - t>)] V W1 J„,(u) exp [(w/jSa)^ - »)] U'

it is seen that they are identical if every vD in the latter is replaced by vw . But the value

of vD along the v = constant line passing through the point (uw , vw , ± 0) is vw (Fig. 4).

Hence vD may be replaced by vw in Eq. 29 and Eq. 32 becomes

a < /• * ^ (—)"("/Pa)2n(l/M)2\1/2
$wD(uw , vw , ± 0, t) tM exP ^ 23 n]v{jl _|_ J/2)

r (UW - u)n~U2 du pM [Ab(m, v) - \T(u, v)](vw - v)n-1/2^

J0 exp [(w//3a)(w^ — m)] •/„,(„) 2 exp [(iv/0a)(vw — i>)]

f*u'

57^

(33)

_ A r' du
= exp

ritf v"""v (iiif - u)W2 exp [(iv/f3a)(uw — v)\

f"M [Ab(m, v) — \T(u, v)] cos {(2v/Mpa)[(uw — u)(pw - f)]'/2} ,

•/»,(«) 2(v,r - y)1/2 exp [(w//3a)(tv - v)}

In Eq. 33 an important theorem is established. The theorem may be stated as follows:

Theorem 3. In the computation of the velocity potential at an instant t at a point

Q in the mixed supersonic region of an oscillating wing at supersonic speed, the contri-

bution of the diaphragm may be evaluated by Eq. 33. In other words, the contribution

of the diaphragm can be evaluated by an equivalent integration over a portion of the

wing surface. Now, the velocity potential $ at point Q on the top wing surface at instant

t may be computed. It is (Fig. 4)
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$(llw j Vw j H" 0, t)

du~J^exp (ivt) I
J0 (uw — u)1/2 exp [(iv//3a)(uw — u)]

r,(u) \A„(u, v) — AT(u, v)] cos {(2v/M/3d)[(uw — u)(vw — i?)]1/2} ,

2(vw - v)1/2 exp F(iv/Ba)(vw - f)l

U fu du

M /"^0jtM exp lv J0 (wir — U)1/2 exp [(iv/(3a)(uw — w)]

/»» (w) 'cto
i(tt)

u r
~ ttM eXP (ivt) l

(34)
r"("' A?-(m, t>) cos j(2y/M)3a)[(My — m)(z^ — fl)]'/2)

{vw — v)1/2 exp [{iv/fia){vw — v)]

du

(uw — u) exp [(ti>//3a)(uw — u)]

rW Ar(w, t>) COS f(2y/M^a)[(Mw. — tt)(t>ir ~ v)]W2} j

J..M (vw - v)w2 exp [(iv//Sa)(fw - »)]

In Eq. 34 the first surface integral represents the contribution from the diaphragm,

while the last two surface integrals are the contribution from the top surface of the wing.

By combining the first and second surface integrals, it is seen that

$(uw , vw , + 0, t)

u , r' du
M ftM 6Xp J0 (uw — U)W2 exp [(iv/fia)(uw — u)]

x r — ' —
J »1 (u)

u rw
-rfexpMJ, -^1/2

"M [Ab(m, t>) + Ar(M, t>)] cos {(2v/M0a)[(uw — M)(ty — v)Y'2}

2(pw — v)1/2 exp [(iv/fia)(vw — w)] "" (35)

du

(uw — u) exp [(iv/ffa)(uw — w)]

" AT(u, v) cos \{2v/Mf3a)[(uw — u)(vw — *>)]
1/2 )

v "W ») w wt "'■fv'jww wjyw "j j I j

x J,lM (Vw ~ V)1/2 exp l(iv/pa){vw - v)]

Eq. 35 may be restated in the following theorem:

Theorem 4. The velocity potential, in the mixed supersonic region on the top surface

of a three-dimensional oscillating wing, may be computed by Eq. 35 or, in the x, y co-

ordinates,

3>(x, y, + 0, 0 = — — exp (ivt)
IT

X
ff [A,(t, y) + A rfe, y)] cos {(y/tfa) [(x - g)2 - /f(y - v)2]1/2} , ,

JJ 2[(x - a2 - 0\y - v)T2 exp [(ivU/[?a2)(x - ?)] ^5a)

« //

S IF l

_ R ovrl A' A ff At^> ^ cos Kp//32«)[(s - ^)2 - g2(y - 7?)2]'/2i dy di;
x exp <>0 JJ [(x _ ?)2 _ ^(j/ _ ^)2]i/2 exp [{ivU/fa*)(x _ f)] .
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where <SV, is the area bounded by 0 < u < u' and i\(u) < v < v2(u) and Sw, is the

area bounded by u' < u < uw and v^u) < v < vw .

The corresponding result for a point on the bottom surface of the wing may be

obtained by interchanging AT and AB . It may be noted that for a wing of zero thickness,

Ab(?, v) + Ar(i;, t]) = 0 so the integrals over (SV, vanish. The simple "equivalent area"

theorem established by Evvard in Ref. 2 for steady flows is thus seen to be valid for

oscillating flows.

Discussion. (A) In Ref. 4, the boundary value problem for the determination of the

velocity potential in the purely supersonic region of a wing in unsteady motion at super-

sonic speed was treated by source-superposition method in a quite general manner. In

fact, theorems 1 and 2 mentioned above are included in Garrick and Rubinow's results.

On specializing to considerations of an oscillating wing, the derivation of Eq. 16 becomes

very simple. The derivation of the same equation in Ref. 4 is more complicated.

(B) Since an arbitrary down wash function can usually be expanded as a Fourier

series, a harmonically oscillatory motion may be considered as a basis for building up

more general motion for a nonstationary wing. This paves the way to construct a proof

for a theorem applicable to more general nonstationary wings. Evvard, in Ref. 1, treated

Im v

Rl y

Fig. 5. Contour C in p-plane.

the general mixed boundary value problem by the source superposition method. His

results include the present theorems 3 and 4; however, his analysis was not carried

through to the present point.

(C) A particular type of motion which is of both theoretical and practical interest

and which demonstrates simply that theorems 3 and 4 apparently do not apply in the

simple equivalent area form to all nonsteady motions, is the so-called "unit step"

motion, in which a wing at rest starts abruptly at a certain instant and then maintains

a steady motion. For composition of the velocity potential for a wing with motion of

this nature, the "unit step" source will be useful. The "unit step" source can be derived

from an oscillating source by a contour integration in the v plane,
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fete V, z, t) - £ I e. 7 - ^ I cos (^) exp {»[( - ^ (X - ©]} f, (36)

where C is the contour shown in Fig. 5. By writing the cosine term in exponential form

Eq. 36 can be shown to yield

y, [4 - $? + j&) + »(< - ;$? - &)]' (36a)

where H(n) is the "unit step" function having the properly that

(l n > 0,

Hb) = < (37)
(.0 n < 0.

Now, draw a sphere of radius (at) enclosed in the circular cone from the "unit step"

source at (£, tj, f), with the center of the sphere located at a distance (Ut) from (£, rj, f)

Fig. 6. Region of influence of the "unit step" source at (£, if, f) at instant t.

(Fig. 6). Then the region of influence of the source is divided into three regions (by

Eq. 37),

(1) In region I, the influence is equivalent to that of a steady source.

(2) In region II, the influence is equivalent to that of a steady source of half strength.

(3) In region III, no influence of the source will be felt.

The region of dependence for a point (x, y, z) will consist of three similar regions.

Consider the lift problem of a rectangular flat plate wing performing a "unit step"

motion. Suppose that the velocity potential at a point S in the mixed supersonic region

near the wing tip is to be computed at an instant t1 , such that at{ < | y \ (Fig. 7). Ac-

cording to the above argument, the condition at <S will depend on both regions A and

B and the wing tip will have no influence. But in accordance with equivalent area form

of Theorem 4 the domain of dependence at S would exclude the shaded region in Fig. 7

in the computation of the velocity potential at S, at instant tx . This provides an example
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of the fallacy of the equivalent area interpretation of Theorem 4 for arbitrary non-

steady motions.

Therefore, theorems 3 and 4 are not directly applicable to "unit step" wings. This

fact is indicated (but not proved) by Eq. 36, because the operation of the contour inte-

u

lyi o

S(x,y)

Fig. 7. The wing tip region of a rectangular flat plate performing "unit step" motion at instant tt .

gration will carry the cosine function to infinity such that the argument of Eq. 25b

breaks down in the proof of Theorem 3.
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