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1. Introduction. The standard forms for the general solution of the Confluent Hyper-

geometric Equation prove too unwieldy for application to many physical problems,

particularly in the field of Quantum Mechanics. The two standard power series solu-

tions,1 Mn,±m(y), reduce to a single regular polynomial solution whenever 2m is an

integer (the standard case for quantum mechanics), and in this case the two integral

solutions2, W*n,m (±y), must be computed with an asymptotic expansion which is

cumbersome for most physically interesting values of y.

The utility of all of these solutions is further limited because their form necessitates

undertaking a complete recomputation for every physically significant value of n. This

makes the labor of computation almost prohibitive in the physically important case

where both n and y must be treated as continuous variables.

The possibility of achieving a more manageable form of the solutions was first

indicated by the work of Wannier3 and Jastrow.4 Wannier showed that in theory the

function Mn,m(y) could be developed as a series in descending powers of n with coeffi-

cients given in terms of Bessel functions. Jastrow actually exhibited the first two terms

of an asymptotically similar series for the solution Wn,m(y). This paper completes the

above treatments by producing analytically a general solution of the differential equation

as a power series in 1/n2 with coefficients readily calculable in terms of known functions.

This treatment differs from those noted above not only in the generality of its results,

but also in the ease with which successive terms of the series may be explicitly generated.

The method employed here makes it possible to exhibit the two particular solutions of

the equation which go to zero as y —> 0 and as y —> + » and to relate these analytically

to the earlier solutions Wn,m(y) and Mn,m(y). Finally this paper will exhibit analytic and

numerical values for the coefficients of several of the series of greatest physical interest.

2. The general series solution. For physical applications Whittaker's standard form

of the Confluent Hypergeometric Equation,
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4= (d
is conveniently transformed by the substitutions

r = | ny, m = I + | (2)

to the form
dlU2^+r_ ^+i-i«+iiy..,o,

ar L n r r J (3)

which, with e = —1/n2, is just the hydrogenic radial wave equation in Rydberg units.

The form (3) will be taken as standard in this paper.

The further substitutions

z = (8r)1/2; [/<'■->= I (4)
z

reduce (3) to the form

- n~2(|z)4 F"1" = 0, (5)

where V< is the Bessel operator of index 21 + 1, i.e.

V, = z2 J + z | + z2 - (2Z + l)2. (6)

It will be assumed here and proven in the Appendix that the general solution of (5)

may be written in the form of a power series in 1/n2, i.e.

r'-n\z) = Zn2kVil\z), (7)
k" 0

where the functions V[l) (z) are analytic functions of z and the series (7) converges

absolutely and uniformly for all real I and for all real n in the region \ n\ > nn, n0 being

an arbitrary positive number. Corresponding solutions of (3) may then be written in

the form

U«-n\z) = Zn2kU(k'\z), (8)
k-0

in which the U[l)(z) are given in terms of the Vi'\z) by the equation

Uil\z) = \zV[l\z). (9)

Since (7) converges uniformly and absolutely it may be inserted in the differential

equation (5), and differentiated term by term. The terms may then be rearranged and

the coefficients of the various powers of 1/n2 equated to zero, which is necessary and

sufficient to make (7) a solution of (5). This procedure yields an infinite set of simul-

taneous differential equations for the coefficients V[0 (2):

ViK" = 0 (10a)

ViF'° = (l2)4^"1 • (10b)
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Now (10a) is just Bessel's equation of index 21 + 1 whose general solution is the

cylindrical functions e2i+1(2), an arbitrary linear combination of the Bessel function

Jii+iiz), and the Weber function, F2i+1(z). These cylindrical functions obey the usual

recursion formulas for Bessel functions:

e„_i(z) + en+1(z) = — e„(z)
z

(11)
ze'n(z) + nen(z) = zen-,(z).

By utilizing these relations and the definition (8) of the Bessel operator Vi , it can be

shown straightforwardly that

^

This equation permits solutions of (10b) to be generated directly. For set q = 0 in

(12). Then this equation becomes identical with (10b) in the case k = 1, provided that

V[l)(z) is defined by the bracket on the left side of (12), i.e. by

Till __ ^ "t-
(22) ®2,+3 12 (2 s) ®2,+4 ' (13)Fi =

Thus a, solution has been found for the first of equations (10b).

For k = 2, the right hand side of (10b) is just (iz)4Fi which, by (13), must contain

two terms of the form (^2)a+4e2i+1+u with q = 2 and q = 3. These are both of the form

found on the right of equation (12), so that F2"(z) can be generated by two applications

of the procedure outlined above. Higher terms are generated successively by the same

process. For example, the first four coefficients of the series for U{0'n\z) are

U,(0) = (r)e'

U[0) =i(iz]e3-^Uz)e4• -m
(14)

W " k (I - eio (I ■)'«■ + ̂ 0 (1 •)'«. - Io^68 (1 •)"«» ■
It has been assumed, and will be proven in the Appendix, that the series generated

above and illustrated in (14) is itself analytic and uniformly convergent in z so that it

may be differentiated term by term with respect to z to yield a series for the derivatives

of the solutions of equation (3). Such a series is discussed further in section 5.

3. Some important particular solutions. The series generated above yields a general

solution of equation (3) because the linear combination aJm(z) + f3Ym(z) to be inserted

for the cylindrical function Gm remains entirely arbitrary, so that the coefficients U[l)(z)

are in fact ambiguously defined. For physical application of the series it is necessary to

examine the effect of removing this ambiguity by particular choices of the constants
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a and /?. This examination is facilitated by defining two sets of coefficients,

and 1Ui'\z), which are gained from the ambiguous coefficients U'k1' (z) by substituting

Jm(z) and Ym(z) respectively for the cylindrical functions Gm(z). Two particular inde-

pendent solutions of (3), °t/<! ,n) (z) and 1Uu'n)(z), may then be defined as the result of

applying the summation (8) to the coefficients °Uil)(z) and 1 U'kl) {z), respectively.

The most general solution of (3) may now be written in the form

f(l, n) °Ua-n\z) + g(I, n) lUa'n\z) = £ n2k[f(l, n) °U[l\z) + g(l, nYUil\z)], (15)
A: = 0

where f(l, n) and g(l, n) are entirely arbitrary. Important particular solutions of (3) are

gained by specifying these arbitrary functions in (15).

Since the Bessel functions all have zeros and the Weber functions all have poles at

the origin, it can be shown that °U"'n)(z) is the only particular solution of (3) with a

zero at the origin. It must therefore be identical, except in amplitude, with the particular

solution M„,m(y) of (1), and a comparison of the leading terms (in z) of the expansions

of the two series yields

Mn,i+1/2(z2/4n) = nl~lT(2l + 2) aUa'n\z). (16)

A second solution of physical interest, the only particular solution which goes to

zero as z goes to infinity, may be discovered by a comparison of the series developed

above with a series solution given by Wannier. In the paper previously noted, Wannier

defines two solutions of (5), Jh+i(z) and Nh+1(z), by the formulas

A^«+i(z) - 1
sin (21 + 1 )t

nl+1

Ju+iiz) = (1/2 z)T(2l + 2) Mn'1+1/2(z /4n)

r[n - Iv'" cos (2Z + 1)t ~ J"-2l-l(z)]•

(17)

These solutions are shown to be independent and well defined for all values of I and n.

Wannier further proves that the particular solution which goes to zero at infinity may

be written5

IF„,i+1/2(22/4n) = (z2/4n)1/2[r(n + I + 1 )nl~1/2r2l+1(z) cos (n - I - 1 >

(18)
+ r(n - T)nl+x/2Nh+i(z) sin (n - I - 1)tt].

Since the series expansion of ilfn>!+1/2 is well known, equations (17) and (18) com-

pletely determine the expansion of Wn,i+i/2 for any value of I. It follows that if, for a

given fixed value of I, the first m + 1 coefficients "U'k" and have been developed

by the generating procedure, the functions f(l, n) and g(l, n) may be determined (to

terms in ri~2m) by explicit comparison of the series expansions (in z) of (15) and (18).

If 21 + 1 is not an integer, it is convenient to compare the coefficients of the terms in

(}z)~21 and in (Jz)2!+2 in the two series; if 21 + 1 is an integer the coefficient of the terms

(%z)2l+2 and (%z)2l+2 log (fz) are most conveniently compared. In the latter case, 21 + 1

an integer, these two terms of (18) are given by

6Wannier's paper has — r(n — l)nl+1,2 • • • , a discrepancy which I assume to be due to a misprint in

the original.
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TT7■ t 2 H \ I r(w —Z —f— 1) (1/2 z)2l+2 / , J !\
Wn.l+1/2(z /4n) = • • • +   —  ^ ^, jcos (n - I - 1)tt

+ - sin (n — I — 1)J 2 log (| z) + 2y — E — + — 0 — log (n)
■k \Z / m_i m

 (2Z - r)! 

(19)

+ r(»- Z)(2Z + 1)! E(-i)r
22'+1~r(2Z + 1 - r)!r(» + I + 1 - r)J

+

in which ¥(x) = d/dx log T(x) and 7 = Euler's constant.

This procedure has been carried out for the two most important cases, 1 = 0 and

I = 1. In both cases the manipulation yields (to terms in n~10)

Wn.l+W2(z2/4n) = n-'-'Tin + I + l)[cos (n - I - 1)t°U"'n\z)

(20)
+ sin (n - I - l)v 1C7"<,,n,(af)].

There are additional theoretical reasons for supposing the equation (20) is in fact

valid for all values of I, integral and non-integral, but a general proof of this result has

not yet been given. Until such a proof is produced the method outlined above may be

used to produce an equivalent result for any value of I for which the coefficients °Uil)

and 1Ukl> have been developed.

4. An alternate generating procedure. Since the Weber functions have not been tabu-

lated for large indices, it is convenient to develop the formulas for U[l\z) so that they

involve only G0(z) and &i(z). This may be accomplished by repeated application of the

first of the recursion formulas (11) to the functions Vil\z) generated by the method of

section 2, but this reduction is arduous and may conveniently be replaced by the pro-

cedure sketched below.

The function Vo \z) is just G2i+1(z), and this may, by application of the recursion

formulas, be rewritten in the form

M /\2i If /-. \2. + l

Vil\z) = E a,(J z) e„ + E mJz) e, , (21)

where the constants a,- and bt are known rational numbers and the constants to, n, M,

and N are known integers.

The function V[l\z) must be expressible in the form

M + 2 /-. \2* N+2 /-, \ 2* +1

Vi'\z) = Z a^z) e0 + E ©! , (22)

where the constants and & are unknown rational numbers which can be determined

by applying the differential equation (10b) to (21) and (22). This application of the

differential equation is facilitated by the use of the equations

V,

V,

(|z)°e„ = -49(i2)a+1ei + [q2 - (21 + 1)2](| s)"c„

(| 2=)<'e1] = 4g(!*)a+1e„ + [(ff - l)2 - (21 + i)l(^) e, ,

(23)
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which are immediate consequences of (6) and (11). This procedure reduces F{"(z) to

the form (21) after which the method may be reapplied to the generation of F"; (z), etc.

It must, however, be noted that this procedure, in contrast to that described in

section 2, does not always uniquely determine the functions V'kl) (z), for the differential

equation (10b) is normally satisfied by functions of the form (21) and (22) for all values

of certain of the coefficients a{ and /3; . This will be understood when it is observed

that if, with V[-i(z) given, a function Fl°(z) is found to satisfy (10b), then the new

function F»°(z) + aVo"(z) will also satisfy (10b) for any a, a fact which follows directly

from (10a). This ambiguity does not affect the legitimacy of the generating procedure,

for although the quantity aVo"(z) may be added to any V[l)(z), the quantity thus added

will, by (10b), affect the formulas for Vl+^z), V[%{z), etc. It is in fact readily seen

from (10b) that the net effect of adding aF"'(z) to the coefficient V[l) {z) is just to

increase the amplitude of the sum of the series, i.e. of Vil ,n> (z), by the factor (1 + a/n2k).

This new generating procedure was used in the preparation of the tables which

follow. For simplicity of computation all those coefficients, and /?,- , which were not

explicitly determined by the procedure were set equal to zero, thus reducing the com-

plexity of the formulas for the coefficients V[l\z). It is readily seen that, for 1 = 0, the

tabulated coefficients are just those which would have been gained using the original

generating procedure. For I = 1 the tabulated coefficients differ from those provided by

the original procedure, but in this case the sums of the series gained with the tabulated

coefficients may be made equal to the sums of the series gained with the standard co-

efficients described in section 2 by multiplying the former with the amplitude factor

n2/(n2 — 1). This modification of the amplitudes of the solutions is of no significance

except when it is necessary to use (16) and (20) for explicit computation of Whittaker's

functions, Mn,m and Wn,m .

5. The tables. Table I below lists the formulas for Ui°\z) with k = 0 through 7.

Table II gives a similar list for the functions TJ™ (z). Tables III and IV list corresponding

formulas for the functions D'k0' (z) and Diu (z) which are defined by

(24)

from which the functions

Dil,n\z) ^ ±n»Dl%) = j- U'Un\z) (25)
k-0 UZ

may be computed.

Tables "V through VIII list values of the functions °Uln (z), 1 U'kl> (z), °D[l\z), and

1Di')(z) for I = 0 and 1, k = 0 through 7, and z = 3.5(0.5)7.5. As before a superscript

zero preceding the function indicates substitution of a Bessel function for the corre-

sponding cylindrical function, and a superscript one connotes use of the Weber function.

Persons interested in utilizing these numerical results may also find useful the Tables of

Coulomb Wave Functions recently prepared by the National Applied Mathematics

Laboratory of the National Bureau of Standards. These supply a single irregular solution

of the wave equation for I = 0 and for values of z smaller than those listed in our tables.

6. Acknowledgments. The problem treated in this paper arose during the preparation

of a doctoral dissertation under the direction of Professor J. H. VanVleck. It is a privilege

to acknowledge my gratitude for his constant encouragement and advice. I am also
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Since completing this paper, my attention has been called to the fact that the gene-

rating procedure developed in section 2 above has been previously discussed by Yost,

Wheeler, and Breit6 in treating the formally identical problem of the wave equation

with a repulsive Coulomb field (proton-proton scattering). The additional analytic and

numerical material displayed here seems more than sufficient to justify the presentation

of this independent investigation.

APPENDIX

The existence of an expansion in 1/ n2. We may seek a solution of equation (5) in the

form of a power series in z,

F(,-n>(z) = z" X>*z* (26)

Throughout its circle of convergence this series may be inserted in the differential equa-

tion, and manipulations identical with those used in producing solutions of Bessel's

equation show that the two series

ViUn\z) = (| z)*<2!+,) ± (-1)^(1 zj" (27)

are solutions of (5) for an arbitrary value of a0 , providing that the coefficients ak are

generated by the formulas

ctj = a0[l i (2? 1)] 1 (28a)

_ ak_! + (at_2/4n2) ,

k[k ± (21 + 1)] ( }

In equations (28a) and (28b) the positive or the negative signs are to be taken together,

so that, if 21 + 1 is not an integer, these equations define two independent solutions of

(5). That choice of sign which makes ±(21 + 1) > 0 produces a solution which is regular

at z = 0; the other choice of sign yields a solution which is irregular there. These two

solutions will hereafter be distinguished as the "regular" and the "irregular" series,

respectively.

When 21 + 1 is an integer, equations (27) and (28) define only the regular solution

of the equation, but in this event a second irregular solution may be defined by any of

the usual7 devices developed for Bessel functions. In this paper we make the expedient

assumption that 21 + 1 is not an integer and then produce two independent solutions

of (5), °Vu'n)(z) and 1V(l'n)(z), which remain finite and independent as 21 + 1 is varied

continuously through any integer or zero. Because of their continuity as functions of I

these solutions may be assumed valid for 21 + 1 an integer, and this assumption may

be rigorously justified by standard methods.

We now investigate the convergence of the two series subject to the simplifying re-

striction that n and I be real variables, z remaining complex. It then appears from (28b)

that all the coefficients ak of the regular series have the same sign as a0 , so it follows

directly that

6F. L. Yost, J. A. Wheeler, and G. Breit, Phys. Rev. 49, p. 174 (1936).
'G. N. Watson, Theory of Bessel functions, (Cambridge University Press, 1945), second edition,

3.5 ff.
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a*+1 _  1 L , k[k ± (21 + 1)]

(ik (k + 1) [A: + 1 ± (21 + 1)] I 4m" + (at_2/at_i)

< i  i JL
(k + l)[fc + 1 ± (21 + 1)] ^ 4n2 '

(29)

The inequality in (29) provides a very weak condition on ak+l/ak, because it is gained

by dropping the entire positive term ai,_2/4n2at_1 from the positive denominator

1 + ah-2/4n2ak-i in the equality. Stronger conditions may be gained by successive appli-

cation of (29) to itself, for (29) may be used to set a lower bound on at_2/Ot-i , and this

bound may be used to write a second and stronger form of (29). The process may be

repeated indefinitely, and the p-th form of (29) gained in this manner is

0,11 + 1  (P_i_2)  _|_  1  f.ira

ak 2(k + 1 — 2p)[k + 1 — 2p ± (21 + 1)] (p + 1)4n~

a formula which reduces to (29) when p = 0 and which is valid for all k >

2p - 1 =F (21 + 1).

It follows that for all | n \ > n0 and for all [ z | < R (where n0 and R are arbitrary

positive numbers) the regular series in (27) converges absolutely and uniformly, for

if p in (30) is chosen to be the largest integer less than R2/16nl, an integer k0 may always

be found such that a,!+1 | \z \2/ak < 1 for all k > k0 . It follows that the regular series

defined by (27) converges to an analytic function of z in any bounded domain in the z

plane and that this function is uniformly continuous in n for all real n such that | n \ >

n0 > 0.

It may next be noted that equation (28) generates coefficients ak which are given by

finite polynomials of the form

Mk

ak = 2 bin2"' (31)
m = 0

where Mk = |k or \(k — 1), whichever is an integer. Further, if ak is a coefficient of

the regular series, the polynomial coefficients bkm must be positive quantities.

By considering (27) and (31), we may now define the "complete series" for V"'n) (z)

as the series in which each bkm n~2m (Jz)2t*(2i+1) is considered a separate term and in

which for each value of k, the summation is carried out over values of m from 0 to Mk

before k is increased by unity. It then follows from the absolute convergence of (27)

and from the uniformly positive values of the bkm that the "complete series" for the

regular solution also converges absolutely and uniformly, so that the terms of the

"complete" series may be rearranged to provide an analytic solution of (5) in the form

VlUn\z) = E Vy^n2" (7)
k = 0

The functions Vin(z) are defined by uniformly and absolutely convergent power series

in z, so that they are analytic functions of z, and the entire series (7) converges uniformly

whenever \ n\ > n„ .

The existence of the series (7) has so far been proven only in the case of the regular

solution of (5), but the proof is readily extended to the irregular solution and hence to
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the general solution, which is an arbitrary linear combination of the two. For consider

a series (27) in which the coefficients ak are replaced by coefficients a'k determined by

al = a'0 | 1 ± (21 + 1) I-1 (32a)

_ aL i + (ap/4n2) , , .
k ~ k | k ± (21 + 1) | (32b)

This series contains only positive terms, so that the entire proof applied to the regular

series holds for it. Further, if the choice of sign which produced the irregular series in

(27) is utilized in (32), then every a'k and every is greater than or equal to the corre-

sponding ak or bt of the irregular series. It follows from the comparison test that the

"complete series" for the irregular solution must converge absolutely and uniformly, so

that the rearrangement of terms is again permissible. This is sufficient to justify entirely

the assumption made in section 2, above.

Table I. Formulas for the coefficients Ui°\z) with k = 0 through 7.

ur = (jje.

t(0) 1 I Z | _ , 1 IZ |u" - -12 ye-+5 y «■

«" - [iio - ife ©* We-
= _U__i

|_252 25

1 1 (z\ + 1

+

120 80 \2J 1 288 \2

lYM
252 \2j ' 60,480 \2) 10,368 \2) J\2/

179 (zY 13

79 1
©0 +

6!

"j 1

.252 168 \2

60,480 \2/ 25,920 \2/ J I)'"'
Ul0) = J_ _ J_ («y + M4 _ M6 + (A*

240 240 \2/ ^ 12,096 \2> 362,880 \2/ T 414,720 \2> . <2:

f-i—+_.240 160 \2) T 1,

z\4 115 (zY , 403 fzY
H +

z'10

512 \2) 145,152 \2/ 1 4,838,400 \2,

e,
497,664 \2/ J

TJm = _|"_1 L (A" . _?L_ M4 _ _J_ (zY , 1,977
5 L132 132 \2/ T 7,040 \2/ 8,448 \2/ ^ 31,933,4

131 f-V°+ 1 ^N12
43,545,600 \2/ 1 29,859,840 \2

31,933,440 \2

4

r-L-iL132 88
+ I ̂  ,'«Y +-8W_ f «V _ t-r I ioo oo l T 63,360 \2/ 10,560 V2.

479 (zY _ 701 (z\10 13
"T" O 1 OO OAfi \ O / «AA \ O /2,128,896 \2/ 43,545,600 \2/ ' 29,859,840 \2,

i)e'
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iy<°) = T 691 _ 691 (zY 229 (zY _ 3,313 (zY 43,037 (zY
6 L32,760 32,760 \2/ + 27,027 \2J 1,853,280 \2/ + 197,683,200 \2/

160,361 M'" , 509 (z\2 1 (zy f zj Q
10,378,368,000 \2/ + 870,912,000 \2) 119,439,360 \2

691 _ 691 (zY 14,929 (zY _ 6,977
32,760 21,840 \2/ + 864,864 \2/ 1,482,624 V2

47,951 (zY _ 393,847 /2V0 461,819
+ 65,894,400 \2/ 5,930,496,000 \2/ + 134,120,448,000 \2

[

50 li +
I4 1 /«,\16

696,729,600 \2/ ' 2,149,908,480 \2

Vin = - 273 _ 273 (zY 26,609 (zY _ 6,953 (zY 3,569 (zY
.3,276 3,276 \2/ + 786,240 \2/ 943,488 \2/ + 3,706,560 V2/

_ 11,717 /2V0 404,561 /2Y2 _ 65,539 /2V4

148,262,400 \2/ + 99,632,332,800 \2/ 536,481,792,000 \2/

+ 11
6,270,566,400 \2/ 180

 I M,8Ke
),592,312,320 \2/ J\2/ 0

1,729,728 \2.
[" 273 _ 273 (zY 53,909 (zY _ 45,011 (zY
L.3,276 2,184 \2/ + 786,240 \2/ 2,358,720 \2/ +

279,187 /2V0 286,511 /2V2 _ 919,637

889,574,400 \2/ + 14,233,190,400 \2/ 1,162,377,216,000 V2

353 fzY6 61
3

20,901,888,000 \2/ 451,480,780,800 \2)

Table II. Formulas for the coefficients U^\z) with k = 0 through 7.

= —2 C0 + [2 - (l)*_I) 'e,

rCl) 1 I A „ 1 / 2
^" = f2 -1$

u" = i) (I) e° I e.

r/(.) = _[_31 I3 L15,120 20,

|" 31 c

L15,120 12,

77<l> _ [~ 41 4

L30,240 40,

11 1

.720 288 \2.

160 \2/ T 10,368 V2,

+ I — 31_ zY _i_ fzY
T|,c,0ft 10 096 \2/ ^ 1,440 \2/ .

e0

:i)«.

5

41 f*Y+ 481
320 \2/ ' 1,814,400 \2/ 622,080 \2/ J

41 /2V 799 /2V _ 2,111

24,192 \2/ + 1,209,600 \2/ 21,772,800 \2/ ' 497,664 \2/
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rrd) = f 31 _ 31 (zY 25 (zY _ 5,557 (zY 11 (zY
5 L 15,840 21,120 \2/ ~t~ 59,136 V2/ 95,800,320 \2/ 3,225,600 \2/

  I ^yoMe +r_3i a
29,859,840 \2/ J\2/ 0 ̂  L 15,840 12,

31 (zY 661 (zY
672 \2/ + 665,280 \2/

3,599 zY 1,471 /z\8 _  1_

19,160,064 \2/ + 87,091,200 \2/ 1,990,656 V2
I u

„(1) = r 10,331 _ 10,331 /z\2 79,021

6 L2,162,160 2,882,880 \2/ + 74,131,2(

4 68,543
880 \2/ ' 74,131,200 \2/ 415,134,720 \2.

24,931 (zY _ 3,239 /A10 1 (zY2

+ 1,761,177,600 \2/ 5,225,472,000 \2) + 107,495,424 V2/ J s) So

_ r 10,331 _ 10,331 (zY 2,251 (zY
1.2,162,160 1,729,728 \2/ + 915,200 \2/

147,967
296,524,800 \2.

650,857 (zY _ 229,793 /A10 221
+ 11,623,772,160 \2/ 67,060,224,000 \2/ + 2,351,462,400 \2,

1 ih
m1' = -

2,149,908,480 \2/ J

' 3,421 _ 3,421 (zY 40,907 (zY _ 57,131
.196,560 262,080 \2/ + 10,378,368 \2/ 88,957,440 \2,

2,743 (zY _ 1,837,343 (z\10 200,159

+ 43,929,600 \2/ 498,161,664,000 \2/ + 1,609,445,376,000 \2

1 (z\l4 , 1
+

522,547,200 \2/ 1 180,592,312,320 \2. s) C„ + [" 3,421
L 196,560

3,421 (z2\ 9,749 (zY _ 235,111 (zY 819,631
157,248 \2 / 1,081,080 \2/ 124,540,416 \2/ 3,558,297,600 \2

407,413 (z\10 800,593 /zY2 751 /zY4

23,721,984,000 \2/ + 1,046,139,494,400 \2J 41,803,776,000 \2/

+ 11
5

Gi
75,246,796,800 \2J

Table III. Formulas for the coefficients D'k0' (z) with k = 0 through 7.

D(00) = (| J e,
2

' 0

= -T2 (I; e° +
.12 12 \2,

= r_L_ ±(*y - j-UY
1.120 80 \2/ 288 \2/ .

ih
Go

J L M2 + J_
120 60 \2) T 480 \2. 0*
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Z><0) = - ±_x !y + j3L ^ + -i t
.252 168 \2/ T 60,480 \2/ ^ 51,840 \2

1 _ J_ M2 11 (zY 127 (z\6 1 (z
.252 126 \2/ ' 2,240 \2/ 181,440 \2/ 10,368 \2.

^<0, = Q L M2 , _L M4 _
L240 160 \2/ ^ 336 \2/

o <3j

79 (*Y + 87
145,152 \2) ' 4,838,400 V2.

1
1 497,664 \2/ J

D'eo - — -—(-T
.240 120 \2J

29 (zY 29
5,040 \2/ 18,144 \2

+ o ifLn (I)8 +2,903,040 \2/ 1 207,360 \2J J

n(o) = _ T-i- - i- W2 + 367  19_ i_ 1,559
L132 88 \21 ^ 63,360 \2/ 14,080 \2/ ^ 10,644,480 \2

rj-i.
L132 66

1 zY° 1
201,600 \2) 5,971,968 \2/ J

(*Y _ 73 (z
\2> 21,120 \2.

l/e°(f)2
229 (zY _ 73 (zY 1,135 /sV _ 791

+ 21,120 \2/ 21,120 \2/ 2,128,896 V2/ 22,809,600 \2.

41 zY , 1 z

+ 1,045,094,400 \2/ + 29,859,840 V2

14

Cx

(0) = r 691 _ 691 (zY 14,383 (zY _ 6,275 (zY 38,123
L32,760 21,840 \2/ + 864,864 \2/ 1,482,624 \2/ + 65,894,400 V2

247,597 (z\w 165,269 fzY2 13

5,930,496,000 \2/ ' 134,120,448,000 \2/ 1 1,393,459,200 \2,

i mhXe - r691 -691 +i4'747 [z-
2,149,908,480 \2/ J\2/ 0 [_32,760 16,380 \2/ T 480,480 \2

+

26,855 zY 19,957 zY _ 29,777
2,594,592 \2/ + 10,782,720 \2/ 164,736,000 \2.

2,154,983 {z\12 1 /2V4 1

249,080,832,000 \2/ 10,752,000 \2) 238,878,200 \2

7,717

"W-
,0, = f 273 _ 273 (zY 17,509 (zY _ 83,803 (zY
7 L3,276 2,184 V2/ + 262,080 V2/ 4,717,440 \2/ + 2,882,880 \2

1,489 /A10 111,901 fzY2 _ 716,747  (z

6,220,800 \2/ + 9,057,484,800 \2/ 2,324,754,432,000 \2

+ 41 + 671 CO TAK aaA AAA Vo/ 162,705,664,000 \2/ ' 902,961,561,600

[ 273 _ 273 (z\2 32,069 /A4 _ 100,217 (zY

+ L3,276 1,638 \2/ + 262,080 \2/ 2,358,720 \2/

84,407 (zY _ 136,427 /2V0 176,149

+ 10,378,368 \2/ 148,262,400 \2/ + 2,846,638,080 \2
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_ 7,911,653 M14 4,001 (z\16

3,487,131,648,000 \2/ + 134,120,448,000 V2/

13 fz\18 1 /~N2°

32,248,627,200 \2) 180,592,312,320 \2) J'

Table IV. Formulas for the coefficients D'k1}(z) with k = 0 through 7.

•Do1' = [2 - (|)2 e0 - [2 - 21

=-T2 (sr* - [1+^

2)e>

^ "I e,
12 \2/ J\2.

Di" = [i> + 55s (l)'](f)'e" - [:
CD _ _l"_31 ;
3 L7,560 8,

k

n + 7
360 ' 1,440 \2) J

640 \2/ 51,840 \2/ J\2/ 0

e,

+i^-^(iy+T^fiv+ 1560 60,480 \2) ' 4,032 \2) ' 10,368 \2. 1)«.
n<i) = f 41 _ 41 M2 2,413

Ll5,120 17,280 \2/ 3,628,8(
z\4 619

1

280 \2/ ' 3,628,800 \2/ 21,772,800 \2.

zV _ [ 41 _ 451 AzV 983 (z
2/ 0 [.15,120 120,960 \2/ + 604,800 \2.497,664 \2/ J

4,783 /zY 11
21,772,800 V2/ 1,244,160 \2,

4

!)«■

J_31_ _ 217 (zY 271 M4 _ 15,347 (zY
s 1.7,920 63,360 \2/ ~l~ 241,920 \2/ 95,800,320 \2/

608
87,091,200 \2.

v 10
1 / 7

+ 29,859,840 \2.
I) e0 + 31 31 /z\2 667 /'zV

L7,920 5,760 \2l 1 266,112 \2.

9,859 zY , 10,379 /z\8 _ 37
19,160,064 \2/ + 239,500,800 \2/ 348,364,800 \2

1

29,859,840 \2/ J
I e,

(1) = f 10,331 _ 10,331 (zY 106,387 (zY _ 1,020,521
6 Ll,081,080 1,235,520 \2/ + 37,065,600 \2/ 2,075,673,6(

313,097 (zY _ 308,233 /2V0
+ 7,264,857,600 \2/ 201,180,672,000 \2/

2,075,673,600 \2

193

+

7,264,857,600 \2J 201,180,672,000 \2/ 18,811,699,200 V2

1 M141M6P _ f 10,331 _ 10,331 (zY
2,149,908,480 \2/ J\2/ 0 Ll,081,080 786,240 \2/

45,079 (zY _ 423,751 (zY 992,969
+ 7,207,200 \2/ 296,524,800 \2/ + 5,811,886,080 \2
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_ 4,285,159 /2V0 887 /zY2

435,891,456,000 \2/ + 6,718,464,000 \2/

+ 11 (z

2,149,908,480 \21 J

14

J)*-
rs(„ = [ 3,421 _ 3,421 (zY 42,671 (zY _ 1,223,947 (zY

7 L98,280 112,320 \2/ + 3,991,680 \2/ 622,702,080 \2/

14,713 (zY _ 558,461 /zY° 7,406,743 (zY2
+ 71,165,952 \2/ 45,287,424,000 \2/ + 20,922,789,888,000 \2/

z\14 11

5,971,968,000 \2/ 128,994,508,800 \2/ J

+

e0

3,421 37,631 (zY 39,815 (zY _ 52,667 (zY
L98,280 786,240 \2/ + 1,729,728 \2/ 9,580,032 \2/

1,316,273 (zY _ 1,370,671 /2V0 25,463,237 (z
+ 1,779,148,800 \2/ 23,721,984,000 V2/ + 10,461,394,944,000 \2

961 fz\li 17 /-Xl6

25,751,126,016 \2/ 37,623,398,400 \2

+
1 z

180,592,312,320 \2/ J

18 5

e,

Table V. Values of the coefficients °Ui°\z) and 1 Ul'}> (z) with k = 0 through 7 and with

z = 3.5(0.5)7.5

Xz \
0

3.5
4.0

4.5
5.0
5.5
6.0
6.5
7.0
7.5

+ .2404
- .1321
- .5199
- .8189
- .9390
- .8301
- .5000
- .0016

+ .5072

+ .3585
+ .4855
+ .4653
+ .1516
- .5591

-1.6394
-2.8582
-3.7693
-3.7948

+ .0593
+ .1662
+ .3677
+ .6405
+ .8194
+ .5094
- .9198
-4.1461
-9.4364

+ .0040
+ .0204
+ .0803
+ .2512
+ .6326
+ 1.2653
+ 1.8590
+ 1.2775
-3.0898

+ .0001
+ .0013
+ .0088
+ .0451
+ .1844

+ .6126
+ 1.6560
+3.5502
+5.4044

+ .0006
+ .0048
+ .0304
+ .1543
+ .6394
+2.1826
+6.0816

°{7i(0)(z)

+ .0033
+ .0248
+ .1500
+ .7462
+3.0829

+ .0028
+ .0241
+ .1703
+ .9871

3.5
4.0

4.5
5.0
5.5
6.0
6.5
7.0
7.5

+ .7178
+ .7959
+ .6772
+ .3697
- .0653
- .5250
- .8908
-1.0593
- .9717

+ .0355
+ .2879
+ .7016
+ 1.1968
+ 1.5768
+ 1.5515
+ .8266
- .7569
-3.0720

- .0362
- .0374

+ .0522
+ .3751
+ 1.1173
+2.3930
+4.0212
+5.2477
+4.5695

- .0043
- .0138
- .0286
- .0125

+ .1787
+ .9167
+2.8948
+6.9946

+ 13.5834

- .0003
- .0020
- .0073
- .0200
- .0276

+ .0838
+ .7845
+3.4453

+ 11.1065

+ .0009
- .0018
- .0124
- .0297

+ .0375
+ .7529
+4.3933

W>(z)

- .0067
- .0128
- .0299

+ .0207
+ .8567

+ .0091
- .0127
- .0512
- .0145
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Table VI. Values of the coefficients °C/"'(2) and 1Uil)(z) with k = 0 through 7 and with

2 = 3.5(0.5)7.0

«\
0 1

3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

+ .6768
+ .8603
+ .9556
+ .9121
+ .7043
+ .3443
- .1149
- .5864

- .4812
- .3974
- .0266

+ .7015
+ 1.7426
+2.8845
+3.7384
+3.8027

- .1773
- .3854
- .6660
- .8679
- .6349

+ .6039
+3.4891
+8.3606

- .0175
- .0712
- .2273
- .5861
-1.2141

-1.9323
-1.8745

+ 1.0917

- .0008
- .0060
- .0328
- .1402
- .4851
-1.3738
-3.1495
-5.5007

- .0003
- .0027
- .0184
- .0990
- .4327
-1.5606
-4.6443

°UkV{z)

- .0015
- .0126
- .0822
- .4354
-1.9128

- .0106
- .2526
- .5038

3.5
4.0
4.5
5.0
5.5
6.0

6.5
7.0

- .6271
- .3640
- .0203

+ .3657
+ .7270
+ .9847
+1.0686
+ .9383

- .4019
- .8184
-1.2730
-1.5819
-1.4944
- .7640

+ .7416
+2.9197

+ .0517
- .0342
- .3460
-1.0580
-2.2842
-3.8890
-5.2455
-5.0617

+ .0143
+ .0343
+ .0369
- .0954
- .6801
-2.3339
-5.9138

-12.0115

+ .0024
+ .0067
+ .0196
+ .0392
- .0028
- .4337
-2.2843
-8.0027

- .0019

+ .0006
+ .0102
+ .0331
+ .0339
- .2992
-2.3942

lW>(z)

+ .0052
+ .0081

+ .0256
+ .0439
- .2510

+ .0134
+ .1615
+ .0885

Table VII. Values of the coefficients °D[0) (z) and 1Djc0)(z) with k = 0 through 7 and with

z = 3.5(0.5)7.5

1

3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

-1.1641

-1.5886
-1.6227
-1.1100
- .0518

+ 1.3558
+2.7472
+3.6760
+3.7454

+ .5464
+ .3094
- .6451
-2.5143
-5.0341
-7.2422
-7.5067
-3.9742

+4.5633

+ .2399
+ .6046
+ 1.1299
+ 1.3511
+ .1217
-4.5006

-14.4887
-29.9598
-46.3111

+ .0248
+ .1219

+ .4524
+ 1.2957
+2.8315
+4.2666
+ 1.9408

-13.2338
-56.8456

+ .0012

+ .0108
+ .0696
+ .3423
+ 1.3213
+4.0382
+9.5432

+ 15.4978
+5.9852

+ .0005
+ .0059
+ .0473
+ .2896
+ 1.4073
+5.5044

+ 17.2609
41.6448

W>(z)

+ .0041
+ .0387
+ .2830
+ 1.6547
+7.8914

+30.6623

+ .0381
+ .3222
+2.2065

+ 12.3593

3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5

+ .5789
- .0678
- .9857
-1.9282
-2.5673
-2.5938
-1.8299
- .3179

+ 1.6497

+ .5965
+ 1.3490
+2.1480
+2.4001
+1.2654
-1.9924
-7.4553

-14.0041
-19.0857

- .0599

+ .1059
+ .7959
+2.5091
+5.5298
+9.1250

+ 10.4872
+4.1085

-17.2733

- .0197
- .0547
- .0496

+ .3255
+2.0747
+7.2941

+ 18.8387
+37.7230
+56.5553

- .0035
- .0115
- .0386
- .0799

+ .0874
+ 1.6581
+8.7051

+31.3594
+87.7617

+ .0030
- .0030
- .0280
- .0904

- .0485

+ 1.4192
+ 10.8055
+51.1071

W°>(z)

- .0042
- .0119
- .0705
- .1036

+ 1.4318
+ 14.8618

- .0921
- .1935
- .2809

+ 1.7063
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Table VIII. Values of the coefficients °D[l\z) and lD'kl) (z) with k = o through 7 and with

z = 3.5(0.5)7.0

0

3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

+ .7277
+ .5962
+ .1473
- .6210
-1.5915
-2.5302
-3.1324
-3.1059

- .0749

+ .8377
+2.4529
+4.5236
+6.2828
+6.4536
+3.5506
-3.4974

- .5522
-1.0240
-1.2668
- .3164

+3.4468
+ 11.7834
+25.1749
+40.5401

- .0941
- .3628
-1.0756
-2.4620
-4.0832
-3.3613

+6.6506
+38.8142

- .0063
- .0441
- .2312
- .9419
-3.0436
-7.7458

-14.5558
-14.2714

- .0031
- .0281
- .1797
- .9013
-3.3690

-12.1739
-32.1868

W>(z)

- .0172
- .1378
- .8705
-4.4488

-18.6006

- .1361
-1.0093
-6.1044

3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

+ .7660
+ 1.2277
+ 1.6832
+ 1.9322
+ 1.7750
+ 1.0840
- .1295
-1.6797

-1.2584
-1.8344
-1.8877
- .7766

+2.0529
+6.6706

+ 12.2448
+ 16.8159

- .0823
- .6849
-2.1735
-4.8160
-8.0904
-9.8249
-5.5858

+ 10.8370

+ .0565
+ .0815
- .1481

-1.4141
-5.4407

-14.8121
-31.2672
-50.8593

+ .0074
+ .0304
+ .0840
+ .0598
- .7879
-5.2657

-20.9246
-62.7531

+ .0051
+ .0260
+ .0853
+ .1463
- .4507
-5.4457

-29.3100

W »(z)

- .0010

+ .0442
+ .1660
- .1685
-5.7721

+ .1452
+ .2918
+ .0160


