
163

HEAT TRANSFER BETWEEN SOLIDS AND GASSES
UNDER NONLINEAR BOUNDARY CONDITIONS*

BY

W. ROBERT MANN

University of North Carolina

AND

FRANTISEK WOLF

University of California at Berkeley

1. Introduction. In the theory of heat transfer between solids and gasses, it is com-

monly assumed that the rate of heat exchange across a gas-solid interface is proportional

to the difference between the temperature of the solid surface and that of the ambient

gas. This assumption is known as Newton's Law of Cooling and it gives rise to a boundary

condition of the following general form

*(sr) - -w <»
where k is the thermal conductivity of the solid; dU/dn is the thermal gradient at the

surface evaluated from the interior in the direction of the outward normal; AU is the

difference in temperature between the surface and the gas, considered positive when the

solid is warmer than the gas; and / is the factor of proportionality, frequently referred to

as the film transfer factor.** If / is a constant the above boundary condition is linear.

At ordinary temperatures, where most of the heat transfer is due to conduction-convec-

tion, / varies but slightly with temperature and it is not a bad approximation to regard

it as a constant. At higher temperatures however, most of the heat is transferred by

radiation and the film transfer factor varies greatly with temperature. Neglecting con-

duction and convection, we find from the "fourth power law" that fr , the film transfer

factor due to radiation, is given by

m4   rp4

fr = Ae (2)

where T, is the absolute temperature of the solid surface, T0 the absolute temperature

of the ambient gas, e the emissivity, and A is a constant depending upon the units of

measurement. Even when all the heat exchange is by conduction-convection the film

transfer factor, fc , changes somewhat with temperature but the dependence is much

more complicated than equation (2) and is expressed in the form of empirically de-

termined relations between certain dimensionless moduli.f

Henceforth we shall not be concerned with any particular form of the relationship

between / and the temperature. The important point is that when the film transfer

factor is a function of the temperature, the boundary condition (1) becomes nonlinear.

It is our purpose in this paper to investigate a nonlinear boundary value problem under

*Received Nov. 8, 1949.

**L. M. K. Boelter, V. H. Cherry, H. A. Johnson, Heat transfer, University of California Press

pp. IIb-1, IIb-2.
fBoelter, Cherry, and Johnson, op. cit., Chap. XII.
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the most general physically significant relationship between the film transfer factor and

the temperature.

2. Statement of problem. In order to keep geometrical considerations as simple as

possible we shall consider only the semi-infinite solid. To simplify further the non-

essential aspects of the problem, we shall assume the gas to be maintained constantly

at unit temperature. This will enable us to regard the film transfer factor as a function

of the surface temperature alone. Requiring that the initial temperature of the solid be

zero throughout, the problem of finding the ensuing temperature-time distribution,

U(x, t), in the solid can be formulated as follows:

U,(x, t) = UXT(x, t), x > 0, t> 0, (3)

U(x, 0) = 0, (3a)

— Ux(0, t) = [1 ~ u(0' 01 = G[U(0, 0], (3b)

| U(x, t) | < M > 1 x > 0, t > 0. (3c)

As usual, the following functions will be assumed to be continuous for the values of x

and t indicated:

U(x, t) for x > 0, t > 0, (3d)

Ux(x, t) for x > 0, t > 0, (3e)

Uxx(x, t), U,(x, t) for x > 0, t > 0. (3f)

Equation (3) is the well-known heat flow equation, where the units of time and

distance have been so chosen as to make the diffusivity 1. (3b) is the special form of

boundary condition (1) corresponding to this particular problem. Observe that —kUx(0, t)

is the rate of heat flow per unit area into the solid from the gas. The function G[U(Q, <)],

which is proportional to this rate of heat exchange, occurs continually throughout the

following work and will be referred to as the input function. Condition (3c) serves the

double purpose of restricting the behavior of U(x, t) as x tends toward infinity, and of

excluding the possibility of an instantaneous heat source at the surface when t = 0.

To complete the statement of the problem, some hypotheses must be made con-

cerning the input function, G[U(0, <)]. We know from experience that heat transfer

takes place in a continuous manner; that a net exchange of heat takes place between

two media only when they are at different temperatures; and that the net rate of heat

transfer is a monotone increasing function of the difference in temperature between the

two media. Referring to the definition of the input function above, we see that in any

physically significant problem the following three hypotheses must hold:

A. G[U] is continuous for all U;

B. G[U] is zero when U = 1;

C. G[U] is a monotone decreasing function of U.

In the following work we shall repeatedly invoke the above hypotheses, especially in

Sec. 5.
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For a brief summary of the principal results obtained, the reader is referred to Sec. 6.

3. Reduction of the problem to a nonlinear integral equation. The temperature dis-

tribution in the solid, which is the unknown quantity in the problem stated in Sec. 2,

is a function of the two variables, x and t. We can easily show, however, by Duhamel's

Principle for example, [1] that U(x, t) is completely determined by the surface tempera-

ture, U(0, t). This leads us to expect that the problem admits a more concise formulation

in terms of the function of a single variable, U(0, t). We shall effect such a re-formulation

by means of the Laplace transform. This well-known transformation will not, of course,

eliminate the essentially nonlinear character of the problem but it does restate it in

terms of a nonlinear integral equation for U(0, t).

In view of the conditions imposed upon U(x, t) in Sec. 2, it is easily verified that the

Laplace transformation with respect to t carries (3), (3b), and (3c) into the following

linear ordinary boundary value problem:

uxx{x, s) — su(x, s) = 0, (3')

Ul(0, s) = -£{G[17(0, *)]} = -g(s), (3b')

M
| u{x, s) | < — for x > 0. (3c')

The general solution of (3') is

u(x, s) = Ae'"1" + Be"1",

where A and B may depend on s but not on x. (3c') requires that 5 = 0 and from (3b')

we find that A = g(s)s~1/2. Hence we get that

u(x,s) = ^e-1" (4)

for the solution of the transformed boundary value problem. Inverting (4) by means of

the Borel formula [2] we obtain

. f G[U(0, r)] -z2 ,
V(z' " - I »"■<! - ,)"■ exp W=7)ir (5)

which expresses U(x, t) in terms of all the values of t/(0, r) between 0 and t. We can

now prove the following theorem:

Theorem 1. A necessary condition that a function y(t) should be a surface temperature

function for the problem stated in Part II is that it satisfy the following singular, nonlinear

integral equation of the Volterra type

V^ = I tti/20J - r)1/2 dT (6)

and that

\y(t)\<M t> 0. (7)

If | y(t) | < 1, then equation (6) is also a sufficient condition. The proof of the theorem is

facilitated by the following lemma:

Lemma I. Any function, y(t), satisfying both (6) and (7) is continuous for t > 0 and

2/(0) = Kwi,_o+ y(t) = o.
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The proof of Lemma I is a straightforward exercise in elementary calculus and will not

be included here.

To establish the necessity condition stated in Theorem 1, we assume that y{t) is a

surface temperature function for the problem under consideration. This means that

there exists a function U(x, t) satisfying the conditions (3) through (3f) and having

the property that y(t) = lim^o U(x, t) = {7(0, I). Applying the continuity condition

(3d) to equation (5) we get directly that

rrm A - [' GlU(°> t)1 7
1/(1), t) — 1/2, xl/2 «T,

J o 7T \t T)

and since U(0, t) = y(t) we see that (6) must hold. (3c) and (3d) give us (7) immediately.

This completes the proof of the necessity.

Turning now to the proof of the sufficiency condition, we assume that y(t) satisfies

(6) and (7) and show that the function defined as follows

jj(x t) — f   exp ——U{X' t} ~ Jo 7r1/2(< - r)1/2 exp 4(t - r) dT

is a solution of the problem stated in Sec. 2. The proof consists in verifying that U(x, t)

defined above satisfies the conditions (3) through (3f). Most of these verifications are

trivial and will be omitted. We do include however the proof for condition (3b) which

is not completely obvious, and that for (3c) which will make clear why the sufficiency

is proved only for | y(t) \ < 1.

Considering first (3b) we differentiate (8) to get

U (x t) — f G[y{r)] ——x— ̂
UAx, t) 2^1/2 (< _ r)3/2 exp 4(< _ t) dr.

Since both this integral and that on the right in (8) converge uniformly in t on any

interval of the form 0 < t < T for any x > 0, the above differentiation is valid. Making

the substitution £ = x2/4(t — t) the above becomes

ux(x, t) = -4, f G ylt - £)
7r Jj/21'/" L \ /.

Form now the following difference

e"£■ d£.

4-|/; am y-« - g[«(, -1)_e rff

We wish to show that for any given fixed t > 0 one can find a 8 such that | x | < S

A < a where t is arbitrarily small. To this end we consider the following inequality

where

A < Aj + A2 + A3

■ -1 £ {°W' -1)] - gw)¥" di

• - If -G[»('-w)4r/J

G[y(t))e~v dt
I •'O

e~ dH
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By the continuity of G and y (see Hypothesis I and Lemma I) we know that there exists

a bound G, such that A, < 2(70. Hence, when 6 = t/6G

A, < e/3, for x < e/3G tl/\

Similarly, there exists a number ij such that

±e<r> G[y(t)] - G
'{' ~ 4?)

<1-
On the interval 9 < t < <*>,

40

2 2
X ^ X

< V =* X < 207J = ?J
4® ' 3G

By taking a: < (e/3(?)»?1/2 we have

A'<if *""«< I-
Turning now to A3 we can write

  r»t/30

A3 < G[y{t)]e-V <%<G e~v df <
Jo ^0

Hence, if we choose 5 to be the smaller of e/3G T\n and e/3G t1/2 we get

a: < 8 => A < e

This implies that

lim Ux(x, t) = -lim f G y(t - d$
x—0 i->0 T Jx/211/' L \ ■*§ / J

= 5% T GWNe~(° d^ = ~ G\y(t)} f e~1' df.
7T J o 7T Jo

Therefore,

U.(0, <) = -G[z/(0]

Considering now condition (3c) we recall from Hypotheses II and III that | y(t) \ < 1

implies G[y] > 0. Making use of the fact that G[y] does not change sign on the interval

of integration, we can invoke the theorem of the mean for definite integrals [3] to get

I TJ(r f\ I — f G[^t)] ™ -*2 a - PYn [' g[y(^)] ,,I U(x, ) ] _ t)W2 exp 4(i _ T)dT - exp 4(< _ ^ ^ ^1/2^ _ ^I/2 dr,

where 0 < t, < t.

By (6) this becomes

U(x, t) = exp [4(^ 1 Tl)]^^ < V® ~ L

The remaining steps in the proof of Theorem 1 are somewhat lengthy but not difficult

and we shall leave them to the reader.

The result of our work so far has been to show that any solution of equation (6)
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which is bounded in absolute value by 1 will yield, through formula (8), a solution of

the nonlinear boundary value problem stated in Part II. We shall see later that when

the input function, G[y], satisfies a Lipschitz condition on the unit interval, the nonlinear

integral equation (6) and the differential boundary value problem are completely

equivalent, i.e. every solution of one will give a solution of the other. From now on we

shall be concerned exclusively with equation (6) which we shall refer to as the surface

temperature equation.

4. The linear case. Before studying the surface temperature equation in its most

general form, we shall consider briefly the important special case in which it is linear.

This case arises when the film transfer factor is assumed to have a constant value, say

/o. The input function G[y(t)], then becomes

[1 ~ ykm° = K[l - y{t)}

and equation (6) reduces to

y{t) = h0 f 1/2/. ^ ?i/2 dr. (6*)
J o 7T T)

The above equation is easily solved by the Laplace transform and gives

h tl/2 r'
y(t) = ^2) ~ hi Jo e"-°* erfc (hrt/2) dr, (9)

where erfc(a;) = 1 — erf(a;) = 1 172 [ e"x' d\ = -372 [ e~x' d\.
7T J 0 7T J x

In the more general case where (6) is nonlinear, the Laplace transform will no longer

be useful, since the transform of the product of two functions cannot be expressed in

terms of the transforms of the individual functions. For this reason, we solve (6*) by a

different method which can be carried over to the nonlinear case. This second method

is that of successive approximations. We begin with the function y0(t) = 0 as the first

approximation to y(t). We then construct the sequence of functions {yjt)} defined by

the recursive formula

2/»+I«) = ho [' }/2~ yJjL dr. (10)
J0 IT (.1 — T)

Making use of the formula

we obtain

[' t"/2 r(n/2 + 1) (n+1)/2

Jo - t)]1/2 dT r(n/2 + 3/2) ' Ui;

2/1® = r(3/2)1 '

(f\ — hp .1/2 _ ho

W) r(3/2) r(2) '

,, (A   /1/2 _ hi  K  ,3/2

yA ) r(3/2)£ r(2) + r(5/2) '

etc.
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In this way we are led to the series

= ^ r(fc/2 + i)1 (-12')

which obviously converges uniformly on any interval of the form 0 < t < T. We can

therefore verify that y{t) as given by (12) satisfies (6*) by substituting it into that

equation and interchanging the order of summation and integration.

We shall see in Part V that the above well-known procedure, with a slight modifica-

tion, can be successfully applied to the nonlinear surface temperature equation.

5. The nonlinear integral equation. In this section we shall study the following sin-

gular, nonlinear, integral equation of the Volterra type

2/(0 = f dr. (6)
J o 7T \t T)

We showed in Part III that it must be satisfied by the surface temperature, U(0, t), of

the problem stated in Part II, and we therefore refer to it as the surface temperature

equation. If we can find a solution of (6) which is bounded in absolute value by 1, then

by formula (8) we can construct a solution, U(x, t) for the problem stated in Part II.

Furthermore, if (6) can be shown, under certain conditions on G, to have a unique

solution and this solution is bounded in absolute value by 1, then it will follow that under

these same conditions the original heat transfer problem has a unique solution. All our

results will be obtained by exploiting Hypotheses A, B, and C of Part II and it is im-

portant that the reader always keep these clearly in mind.

First we shall prove an existence theorem stating that (6) always has at least one

solution which is bounded in absolute value by 1. To this end we introduce the following

functional transformation

3[z](0 = ['' ./v*yL dT, (13)
J o 7T \t T)

where

iG[z(t)] when z(t) < 1,

<?*[*«)] = <

(. 0 when z{t) > 1.

Since G[l] = 0, G*[z] is continuous. Now pick T > 0 arbitrarily large and regard it as

fixed. Henceforth we shall confine our attention to the interval 0 < t < T.

Consider the sequence of functions defined by the recursive formula

2n+1(<) = 3 [zn](,t), where z0(<) = 0. (14)

We can evaluate z,(t) explicitly since G[zo(0] has the constant value G[0] which we shall

denote by G0 . We get

Zl^ = r(3/2) ^

z2(t) cannot be evaluated without knowing the input function, G[y], but the following

lemma enables us to infer some important facts about the behavior of the sequence

{Zn(<)l-
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Lemma II. If u(t) and v(t) are two functions which are continuous for t > 0, which satisfy

the inequality u(t) > v(t) for all t > 0, and if u(0) < 1, then

3[w](<) < 3[«](<), for all t > 0.

The above lemma is a very simple consequence of the monotone decreasing nature of

G[y] stated in Hypothesis C. Since zo(0) = 2,(0) = 0 and since Zi(t) > z0(t) for all t > 0,

it follows from Lemma II by the method of induction that the following inequalities

hold for all t > 0.

Zi(t) > z3(t) > ■■■ > 22»+i(0 > ••• (15)

z0(t) < z2{t) < ■•• < z2n(t) < ■•• (16)

and also

Z2n+l(0 ^ Z2k(t), (17)

where n and k are independent positive integers or zero. Since z0(t) = 0, it follows from

the above inequalities that for all n > 0, zn(t) > 0 for all t > 0. The first few of these

functions are sketched in the figure below.

Fig. 1.

All of these functions are bounded from below by z0(t) and from above by Zi(t).

Therefore, on the arbitrary fixed interval [0, T], they are equibounded. We shall find

shortly that the \zn(t)} are also equicontinuous. From this it follows by Arzela's theorem

that the closure of the set {zn(t)} in the usual topology is compact. It is easy to see,

further, that the {z2n+1(<)} converge uniformly from above to some function, say u(t),

and the jz2„(0} converge uniformly from below to a function, v(t). If u(t) = v(t), then

we have a fixpoint of the transformation (13). If u(t) and v(t) are not the same function,

then each will be a fixpoint of the square of the transformation (13) but neither will be

a fixpoint of the transformation itself.

In order to prove that the transformation (13) does have a fixpoint, we enlarge our

attention to the collection of all functions which are continuous on the arbitrarily large

fixed interval [0, T], We consider these functions as elements of a Banach space, 6, by
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introducing the usual topology, i.e. we denote the norm of an element / by ||/ || and

define it as follows

ll/H = l.u.b. | /(<) | on [0, T].

By the distance between two elements / and g we mean the norm of their difference

||/ — g ||, and by convergence in 6 we mean uniform convergence. It is easily verified

that these definitions do make Q a Banach space, i.e., a normed linear complete space.

In this space we consider the set Z consisting of all members of 6 which are non-

negative, bounded above by z^t) and which have a modulus of continuity given by

I z(*o -«(« I < Tji & - t,y/2.
7r

It is easy to show that Z is convex and compact.

We shall now show that the transformation carries H into itself. From Lemma II

it is easily seen that the transform under (13) of any member of G which is contained

between z0(t) and Zi(£) must also lie within these bounds. Moreover, assuming t2 > t,

and denoting 3[z](0 by u(t), we shall have

, ../,x . /.m I C" , f" G*[z(t) 1 , |
I w(fe) w(^i) I — / 1/2f. \ 1/2 dr / 1/2/1 \ 1/2 dr

| Jo 7T \t TJ Jo 7T \t T)

< I J" [«2 - r)-1/2 - (h - r)-1/2] dr + I [" , G*Ht)]
| Jo T | 7T - r)1

C?T

< I ̂  VY2 - (t2 - uf/2 - tY2}
I ̂

since G*[z(<)] < C[0] for all t > 0, and G"[0] = G0 . From here we find that

I«(« - U(t0 | < ^ («, - o1/2.

2(?o j \ 1/2
H—172 ('2 — ^1)

IT

IT

This means that u{t) has the same modulus of continuity as that prescribed for the

members of Z. In other words, we have shown that 3 carries H into a subset of itself,

namely Z. Moreover, it is easily seen that 3 is continuous on II, since if u and v are any

two members of H, then

" G*\u(t)] - G*[v{r)\
7r1/2« - r)1/2 dT

' g[«*(r)] ~ g[P*(r)] ?

TU2(t - t)1/2 ^

when u{t) < 1

where u*(<) = (18)

when u(t) > 1

From this and the continuity of G, it is very simple to show that 3 is continuous on II.

Summarizing the above results, we have that 3 is a functional transformation which

carries a convex, compact set H of the Banach space G into itself continuously. Using
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Schauder's generalization from Euclidian space to Banach space of the Brouwer fixpoint

theorem, [5] we can infer that 3 has a fixpoint in H. This result will be stated in the fol-

lowing theorem.

Theorem 2. On any interval of the form [0, T] there is at least one continuous function,

y(t), such that 0 < y(t) < (G0tl/2/T(3/2)) for all t > 0 and such that y{t) = 3 [?/](£)•

In order to prove the existence of a solution of equation (6), we must prove the

following theorem.

Theorem 3. If y(t) is a continuous fixpoint of the transformation (13) for 0 < t < T,

then y(t) < 1 for 0 < t < T.

To prove this, we shall assume that the theorem is false and arrive at a contradiction.

Let S be the set of points on the open interval 0 < t < T for which y(t) > 1. Since

yit) is continuous, S is open. In fact, S consists of disjoint open intervals. Now define

when t % S,

when t e S.

The continuity of y*(t) follows from that of y(t), and obviously

%]«) = %*]«)• (19)

Let t be an arbitrary point of S. Then t belongs to an open interval of the form

U < t < t2, and

_ f" G*{y*(r)] , [' G*[y*(r))
3[2/1(0 ~ Jo [tr(( - r)]1/2 dT + 4 [tr« - r)]1/2

But since y*(t) = 1 and G[y*(t)] = 0 when tt < t < t2, and since (?*[?/*] = G[y*] is never

negative we can write

nUA(A- f" g[y*(r)] .1 + f ,7. f" G[V*{t)] J.
3[y]{t) ~ Jo 7T1/2(t - t)1/2 dT + Jlt 7T1/2(t - r)1/2 dT ~ Jo T1/2(t - r)'/2 dT

%J(0 < /" = 1.•'O 7T \h T)

This means that 3[i/*](0 < 1 on S. But since 3[?/*](i) = 3[?/](<), we infer that y(t) =

3[y\ (0 < 1 on S. This is a contradiction unless S is empty and thus the theorem is

proved.

We now notice that for any function, /(<), which does not exceed 1, <?[/(<)] = G*[/(<)]

and for continuous /

arflfA_ f G*[f(r)l d I" G[f(r)]
S[m ~ Jo T,/2(t - r)'/2 dT ~ Jo *l/\t ~ t)1/2 dT-

Since we have just shown that the transformation 3 always has at least one continuous

fixpoint, y(t), which is bounded between 0 and 1, y(t) has the following property

vv> - -1' ?^V,i'- <20)



1951] HEAT TRANSFER BETWEEN SOLIDS AND GASSES 173

We have now obtained the following existence theorem.

Theorem 4. For any input function, G[y], there is, on any interval of the form 0 < t < T,

at least one continuous surface temperature function, y(t), satisfying equation (6) and having

the property that 0 < y{t) < 1.

By virtue of Theorem 1, this means that the nonlinear differential boundary value

problem stated in Part II always has a solution.

Theorem 4 expresses the best result which we have been able to obtain with the

most general input function, i.e. with the input function subject only to Hypotheses A,

B, and C of Part II. After strengthening Hypothesis A, we shall proceed to give a method

for obtaining a solution of the surface temperature equation; to prove the uniqueness of

this solution; and to find other properties of the surface temperature. This procedure

of deriving increasingly better results by progressively strengthening our hypotheses is

of mathematical rather than of physical interest, since the strongest hypothesis which

we shall ever use in place of A, namely that G is analytic, can safely be assumed in all

heat transfer problems of physical significance.

Theorem 5. If G[u] satisfies a Lipschitz condition on the closed unit interval 0 < u < 1,

then the set of approximating functions, {zn(t)} defined by the recursive formula (14) converge

to a solution of (6) for all t > 0 and the convergence is uniform on every finite interval. If

we denote this solution by y(t), then 0 < y(t) < 1 for all t > 0.

The proof is elementary, but since we shall need the same method, with slight variations,

in following demonstrations, we shall go through it once here and merely refer to it later.

In view of the fact that (?*[w(2)] = G[u*(t)] where u*(t) is defined as in (18), and

since z* (t) is between 0 and 1 for all t > 0 we can write

, 2l(1) _ _w,. /; i * < l /; i

where L is the Lipschitz constant. Since | z*(t) — z*(t) | < 1 for all t > 0, this becomes

z2(t) Zl(t) | < L Jn Tu2(td^_ ry„ - r(3/2) tU2.

Similarly,

i *,«> - *,«> i = /' i <"<4! - i * < l /' 'ISr'-'?'-1 *•
Jo 7T \t T) J o 7T T)

It is easily seen that

I z*+i(t) ~ z*(t) | < | zt+1(t) - zk(t) |.

Therefore,

i m - m i < Ym
Substituting this into the above bound for | z3(t) — z2(t) | gives

I m _ mix I? [' r1/2 _ V r(3/2) L2
I z3[t) z2w | < T(Sj,2) J0 T1/2(t - t)1/2 r(3/2) r(2) r(2)
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Continuing in this way with the help of formula (11) we get

T2n

I Z2n+i(t) — Z2n(t) | < ' •

This difference approaches 0 as n —»°° for any value of t. By the inequalities (15), (16),

and (17) it is therefore clear that on any finite interval the functions {zn(t)\ converge

uniformly toward a limit function, y(t). By virtue of the uniformity of convergence we

can pass to the limit under the integral sign as n —><» in the recursive formula (14) and

in this way show that y(i) must be a fixpoint of the transformation 3. But we proved in

Theorem 3 that any continuous fixpoint of 3 is bounded above by 1. This implies that

y{t) satisfies (20) and is therefore a solution of (6).

Extending the Lipschitz condition to hold beyond the unit interval we prove the

uniqueness of the surface temperature function.

Theorem 6. If G[u] satisfies a Lipschitz condition on the interval [0, 1 + «] for any e

greater than zero, then equation (6) has a unique bounded solution.

We already know from Theorem 4 that (6) has at least one solution, y(t) such that

0 < y(t) < 1 for all t > 0. Let u(t) be any other bounded solution of (6). We know by

Lemma 1 that u{t) is continuous and that u(0) = 0. Since the integrand of (6) is positive

when w< 1, we also know that the origin is not a limit point of zeros of u(t). Suppose

that u{t) has zeros to the right of the origin and let t0 be the first one. Let tk be the first

value of t on the interval 0 < t < t0 for which y(t) = 1 + e/k for any positive integer k.

Then for 0 < t < tk we have 0 < u(t) < 1 + e and thus the Lipschitz condition will

hold for G. Applying the method of successive approximations illustrated in the proof

of Theorem 5 to the difference u(tk) — y(tk) we obtain

I u(tk) - y(tk) | < £/2 for all n. (21)

Since this difference tends to zero as n approaches infinity, we see that u(tk) = y(tk) < 1

which is a contradiction. Hence there is no value of t on the interval 0 < t < t0 for which

u(t) exceeds 1. But here again is a contradiction because it is impossible that u(t0) = 0

since by Hypotheses B and C there can have been no negative contribution to the in-

tegral in (6). This means that u(t) remains between 0 and 1. Therefore we can use the

method of successive approximations to show that (21) holds for all t and hence u(t) =

2/(0-

Theorem 7. If G[u] is analytic on the closed unit interval [0, 1], then equation (6) has a

unique bounded solution, y(t), and y(t) is analytic for all t > 0.

The uniqueness follows from the fact that since G is analytic on the closed unit interval,

it can be analytically continued onto a somewhat larger interval [0, 1 + «]. G obviously

satisfies a Lipschitz condition on this larger interval and by Theorem 6 we have the

uniqueness of the solution.

The proof of the analyticity, which is somewhat lengthy, divides itself into the

following three steps. First we shall show how the solution, y(t), of (6) can be represented

as the limit of a certain uniformly convergent sequence {«„(£)}. Second, we shall show

how y(t) can be represented as the limit of a uniformly convergent sequence, \vjn(t) j,

of analytic functions of the real variable, t. Third, we consider t to be a complex variable
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and show that a sequence, {Wn(()}, of analytic functions of the complex variable con-

verge uniformly to a function, Y(t), which coincides with y(t) along the real axis.

We begin the first step by introducing a set of functions defined as follows:

u0(t) = 0,

«•«» = - I' d' - [ <22>

when un(t) < 1 + e,

when u„(t) > 1 + «,

and where

un{t) =

when un(t) < 1 + e,

when un(t) > 1 + e.

We see immediately that when e = 0, the sequence {«„(<)} reduces to the sequence

{zn(f)} already introduced by the recursive formula (14). Also, vnit) = Zi(t) =

G0/r(3/2)<1/2 for any e, but u2(t), unlike z2(t), will eventually fall below the i-axis for

any e > 0 because of the negative contribution to the integral in (22) when the argument

Fig. 2.

of the input function is greater than 1. Let us denote by T2 this zero of u(t). It is a

simple matter to verify the intuitively obvious fact that T2 is a continuous function of

e which decreases from <» to some positive number T2(0) as e increases from 0 to °°.

Confining our attention as usual to a fixed arbitrarily large interval [0, T] on the t-axis

we fix e at a constant value sufficiently small that T2(e) > T and that 1 + e lies within

the interval of analyticity of G.
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Recalling the monotone decreasing nature of G, and making use of the fact that u2(i) >

u0(t) for 0 < t < T, we can easily verify the following inequalities for 0 < t < T:

Hi(0 Usit) > Ue,(j) ̂  ^ ^2n+l(0 ^ j (23)

Uo(t) < u2(t) < m4(0 < • • • < u2n(t) < •■■ (24)

and

u2n+1(t) > u2k(t), (25)

where n and k are independent positive integers or zero. Using these inequalities and the

method demonstrated in the proof of Theorem 5, we can prove that the sequence {un(t)}

converges uniformly on [0, T] to a fixpoint, y(t), of the transformation 3 ,[«](<) defined

in (22).

We must now show that y(t) is the solution of (6) on the interval under consideration.

From the above inequalities we know that y(t) > 0 for 0 < t < T. Assume now that

h is the first value of t for which y(t) = 1 + e. Then on the closed interval [0, £,] G,[y(t)] =

G[y(t)\ and y(t) is therefore the solution of (6) on this subinterval. But this means that

y(t) < 1 and contradicts the assumption that y(tx) = 1 + e. Hence y(t) is the solution

of (6) on the entire interval [0, T].

The functions \un(t)} are not analytic because of the truncating process employed

in their definition. We shall now represent their limit function, y(t), as the limit of a

uniformly convergent sequence of analytic functions. Choose N so large that

n > N 0 < un(t) <l + «/2 for 0 <t<T (26)

and pick k so large that 2k > N. It is our purpose to interpose an analytic function,

say w0(t), between u2k(f) and u2k+2(t) on 0 < t < T. By inequalities (23), (24), and (25),

and by reasoning similar to that on which Lemma 2 is based, it is easily seen that the

successive transforms of w0(t) under 3« will lie between those of u2k(t) and u2k+2(t). If we

designate these successive transforms by {wn(t)} it is therefore clear that lim„_„ wjt) =

y(t) uniformly on [0, T]. Moreover, these functions will be analytic on the open interval

0 < t < T, since none will be truncated in the recursive formula. From (22) and (26)

we see that their recursive definition could be written as follows:

,,n _ f' G[wn(r)] ,
Wn+l(<) ~ i [t(1 - r)]1/2 dT• (27)

In other words, each wn(t) is the fractional integral of order 1/2 of a function analytic

for t > 0.

The un{t) themselves are analytic on the open interval from the origin up to the

point t = T[(3/2)(l + e)/(?0]2 = T, where u, (t) is truncated. On this interval [0, Tt]

the \ujt) j have the same recursive definition as that for the {wn(t)} shown in (27)

except that u0(t) = 0. In the neighborhood 0 < t < T, u2k(t) and u2k+2(t) can be ex-

panded in powers of \/1 as follows.

u2k(t) — aj'2 + a2t + a3t3/~ + • • • + antn/2 + • • • ,

u2k+2 (0 = M1/2 + i>21 + b3t3/2 + ••• + bntn/2 + — .

Suppose that a, = 6,- for i = 1, 2, 3, • • • , m and that am+1 t6 bm+1 .
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Clearly bm+l > am+1 . Now form the following functions

rj / ,\   ^2 k(.t) fm(j) jj /a   ^2fc + 2(0 frrSS)
U2k(l) — („ + l)/2 > - ^(« + l)/2 '

where

m m

fM) = £ a,*"' = Z M</2.
t = 1 »-l

This gives two functions, U2k+2(t) and U2k(t), such that U2k+2(t) > U2k(t) for Q < t < T.

There will be a minimum distance, say 5, between the two functions on [0, T], Approxi-

mate to the mean of the two functions by closer than 5/2 with a polynomial, Pit). Then

we can write

U2k{t) < P(t) < U2k+2(t), 0 < t < T,

t(m+1)/2U2k(t) < t'm+1)/2P(t) < t(m+v/2U2k+2(t), 0 < t < T,

tim+x)/2U2k(t) + Ut) < t(m+')/2P(t) + fM) < t(m+1W2U2k+2(t) + fM), 0 < t < T.

But

t(m+1)/2U2k(t) + fM) = u2k{t) and t(m+l)/2U2k+2{t) + fM) = u2k+2{t).

Hence if we denote t[m+1)/2P(t) + jm{t) by w„(t) we have

u2k{t) < w0(t) < u2k+2(t) for 0 < t < T

and w0(t) is analytic on this interval. Using w0(t) in the recursive formula (27) we get

the desired sequence of analytic functions, {wjt) j converging uniformly to y(t).

Now consider t to be a complex variable, t = u + iv. The functions {wa(t) j will

S

W s r+is

r R :|0£r-
|lsl <S

<r<l + e
s

Fig. 3.

then become complex functions which we shall denote by { Wn{t)} where Wn = r„ + is„ .

Since G is analytic on the closed interval [0, 1 + e] we know that it has an analytic

continuation into a neighborhood of this interval in the complex W-plane. In particular

we know that there is a closed domain, R, of the form shown below on which G is analytic.
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Since G is analytic on R which is closed, we know that there exists a number, D, such

that

W e R —» | G[W] | < D, (28)

and since Wa(t) is a polynomial in powers of yj t, we know that it is analytic in any

region of the complex i-plane which does not include the origin. Consider now a region

A in the i-plane of the form shown below

Fig. 4.

W0(t) can be regarded as a transformation which maps the region, A, conformally from

the i-plane into the JF-plane. Recalling (26) and the construction of w0(t), we see that

W0(t) carries the segment [0, T] into a subset of [0, 1 + e/2] on the r-axis. From this

and the continuity of W0{t), it follows that by taking V sufficiently small, say V < F, ,

W0(t) will map A into R, i.e.

UA -> W0(t)eR -» | G[W0{t)] | < D.

It is now our purpose to show that by taking A sufficiently narrow,

ttA —> Wn(t)tR, for all n. (29)

Integrating along the path shown in Figure 4 we have

W(A- f <W.(r)] , , [' G[Wq{t)]
Wl{t) ~ I [r(t - r)]I/2 dT + i„ [w(t - r)]1/2 At*

The real part of Wi (t) can be estimated as follows

nfWfAl s , I [' G[Wn{r)]
< Jo />(u _ t)1/2 dT+\ju ,•/«(t _ t)1/2 dr

< 1 + 2 D J I ~
t1/2(u + iv — u — if)1
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Along the vertical strip, r = u + and (It = id£

< 1 + 1 + D /; ^ r. -1+1 + 5^2) »"'•

This shows that for all values of t belonging to A, we have

« I -P Tzl/2

By requiring that

< i + 2 + F

we insure that D/T(3/2)V1/2 < e/2 and therefore fft{ Wi{t)} < 1 + e.

Turning now to the imaginary part, we observe that along the stretch [0, u],

M- r)-1/2} <  {2V)V2
2[(« - r)2 + v ]

■ alW (f\\ f" G[W0{r)] D ,/2
" !l()! < (2tt)1/2 Jo [(« - r)2 + V2]I/2 + r(3/2)

< (Sp [kl 5(m2 +v2)1/2 + «} - in»] + «,/2-

Thus, for any < belonging to A, the following inequality holds

c t/1/2 n
*{TTi(0} < [In {(T2 + 72)1/2 + T\ - In 7] + F1/2.

Since the first term on the right-hand side of this inequality tends to zero with V, there

exists a number, Vs , such that

V < V3 —> | 8{Wi(t)) | <

Therefore, by taking V to be smaller than the least of the three numbers F, , V2 , V3 ,

we define a region A, in the complex <-plane which is mapped by the function W1 (t)

into the region R in the complex TF-plane. By induction it is easy to show that each

one of the functions Wn(t) maps A into R.

We have now shown that {Wn(t)} is a sequence of functions which are analytic in

A, equibounded in A, and which converges uniformly on the interval 0 < t < T, which

is an infinite subset of A, to the function y(t). By Vitali's theorem we can conclude that

{Wn(t)} converges uniformly throughout A to a function, Y(t), which is the analytic

continuation of y(t) into the complex <-plane. y(t) is therefore an analytic function of

the real variable t for 0 < t < T. This completes the proof of Theorem 7, since T was

chosen arbitrarily large.

Theorem 8. If G[y] is analytic on the unit interval 0 < y < 1, then y{t) is monotone in-

creasing for all t > 0.
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By differentiating equation (6) we get

_ f' y(T)]y'(T) j I cqm
V (<) ~ Jo [w(t - r)]1/2 dT + (tr<)1/2- (30)

Perhaps the easiest way of justifying the above result of differentiating the singular

integral in the surface temperature equation with respect to the parameter t is to observe

that (6) can be written y{t) — G[y(t)]* 1/(xi)1/2 where the star indicates the convolution

or faltung operation. Then, by a well-known theorem on the differentiation of the faltung

under hypotheses which are satisfied by the above functions [6], formula (30) follows

immediately.

y(t) is a power series in <1/2 and is analytic for t > 0, but whereas by Lemma 17/(0) = 0,

y'(t) approaches infinity like t~1/2 as t approaches 0. If y'(t) ever becomes negative,

there must be a first zero, say t0 , to the right of which is an open interval, I, on which

y'(t) is less than 0. Let t, be any point belonging to I. Then we must have

\ _ f'° G'[y(r)] . r( \ j i G0 _ n /oi\
V (to) — / i/2/.   \ 1/2 y \t) dr + , . 1/2 — 0, (31)

J o 7T {to T) \1T to)

,/rn_ f" G'[y(r)]y'(r) f" G'[y{r))y'(r) G0
y {U> ~ Jo T'^t, - t)1/2 dT + J„ ir'/2(ti - r)1/2 dT + WQ1"-

The latter equation can be written as follows

y\U) = J" (j^y2 1 4%(t)\i/2 y'(r) dr
J0 \ti — t! 7r (Jo — T)

■ ['' G'[y(r)] ,, . , Gc
+ Ju - t)1/2 V (t) dT + W)

Go tl/2

:0),/2 t\'2-

In the first integral on the right, the factor [(<„ — r)/(i, — r)]t/2 decreases monotonically

from tl/2/t\/2 to zero. By the theorem of the mean we know that there exists a number

T; between 0 and t0 such that

,u \ _ (to - r,V/2 f" G'ly(r)] ,( f" G'[y(r)]y'(r)
y (<l) ~ V<, - J Jo T1/2(t0 - t)I/2 V (t) dT + ],. 7T1/2(^ - r)1/2 dT +

ty2 Go

tY2 (tt<o)1/2-

Since G'[y\ is negative for all y, and since ?/ (t) has been assumed to be negative on the

interval I, the second integral above must be positive. Comparing this last expression

for y'(t) with equation (31) and noticing that

(h^)'
,1/2

< ——

tY2'

it is obvious that y'iU) < 0. This contradiction shows that y'(t) cannot become negative,

and since y'{t) is analytic for t > 0, we know that y(t) must be monotone increasing.

Theorem 9. Let GL be the space of input functions G[u\ which satisfy a Lipschitz condition

with constant <L on an interval of the form 0 < u < 1 + e for any e > 0. Let Y be the

space of corresponding surface temperature functions, y(t). 4s a metric we take the norm

of the difference. The equation (6) represents a continuous implicit functional transformation

from Gl to Y.
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By Theorem (6) we know that for each element G of GL there is a unique element y(t)

of Y, and that 0 < y(t) < 1 for all t > 0. Select arbitrarily any member G, of Gt, and

let yx{t) be its corresponding element in Y. Let G2 and y2(t) be any other corresponding

pair of functions-. The difference between the two surface temperature can be written

as follows

, „ (a _ [' GAvM) - GAvM) f g2[y,(r)1 - g,[y,(r)l ,
Viw 2/iw ~ / i/2/. _ \ 1/2 ar + / l/2(. _ >.1/2 dr.

J 0 7T \t T) J 0 7T \t T)

If we specify that G2 be chosen in such a way that | G2[u] — (?,[«] | < S for 0 < u < 1,

then a bound for the above difference is shown below:

I Sfe(0 - yi(t) \<L [' 1 Hi} ~ Hi 1 dr + [' 1/2 5 W2 dr.
Jq IT T) J 0 7r \l T)

In view of the fact that | y2(t) — y, (t) j < 1 for all t > 0, (32) becomes

(32)

y2(t) yi(t) | <L Jo r)i/2 + 5 Jo
_ L + 5 ,

T1/2(t - r)I/2 ' " Jo 7rl/\t - r)1/2 ~ T(3/2) '

1/2

Substituting this bound back into (32) we get

I 2/2(0 - 2/1(0 I < ^(2) 1 + r(3/2) 1' '

By repeating this process of successive approximations n times we get

I „ ti\ _ (t\ I _i_ Lb . L S 3/2 , , L S (n+ D/2
12/2(0 2/1(0 I < r(-3/2) + r(2) + r(5/2) + " • + r((n + 3)/2)

Ln+\L + S) /2+,

+ r(n/2 + 2) •

Letting n tend toward infinity, the above can be written as follows

, ,rt . T.f 1 , L2t , L*t2 , L6t3 , 1
I 2/2(0 - 2/i(0 I < + 1X3) + 1X4) + 1X5) + *"" J

l/2r 1 vt ve lv 1
^ Lr(3/2) r(5/2) r(7/2) r(7/2) J*

Restricting ourselves to an arbitrarily large fixed interval [0, T] we can now show that

I 2/2(0 - 2/i(0 I < ^1/2[1 + LTI/2]eL*T.

For any given L and T the above difference can be made arbitrarily small by taking 8

sufficiently small. This completes the proof of Theorem 9.

Making use of the fact that any monotone continuous function, G[u], which satisfies

a Lipschitz condition with constant L can be approximated arbitrarily closely on any

closed finite interval by a monotone analytic function which also satisfies a Lipschitz

condition with constant L, we can draw the following conclusion.

Theorem 10. If the in-put function G[u] satisfies a Lipschitz condition on the interval
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0 < u < 1 + e, for any t greater than zero, then the associated surface temperature function,

y(t), is non-decreasing for all t greater than zero.

This theorem is a simple consequence of Theorems 8 and 9, and the proof will be left

to the reader. We shall merely indicate here one way in which any input function, G[u],

can be approximated on [0, 1 + «] by an analytic input function. Define H[u, X] as

follows

H\u x| - - /"" fu + H fe - - f"   dxH\u, M - r J_a + X2 df - r J__ (x _ uy + X2 dx

i rn
= - / Gi[u + X tan d] dd,

IT «/ — x/2

G[1 + «] when u > 1 + e,

Gi [u] = when 0 < u < 1 + e,

^G[0] when u < 0.

It is easily verified that H[u, X] is continuous in X, that limx^o H[u, X] = G,[m] and hence

that the convergence is uniform on the closed interval [0, 1 + «]. By examining the differ-

ence II[u2 , X] — H[ui , X] it is evident that the monotony of Gt on [0, 1 + «] implies

that of H, and it is obvious that if G, satisfies a Lipschitz condition with constant L,

the same is true of H. Furthermore, H[u, X] is analytic in u.

Theorem 11. If the input function G[u] satisfies a Lipschitz condition on an interval

[0, 1 + e] for any e greater than zero, and if y{t) is the corresponding surface temperature

function, then y(t) < 1 for all t > 0, and lim(_„ y(t) = 1.

Assume that y(ti) = 1. Then since by Theorem 10 y(t) is non-decreasing, and since

0 < y(t) < 1 for all t > 0, it follows that y(t) = 1 for all t > tl . Let t2 be any value

of t greater than tl . Then

f" GMr)] ,
y\U) = I zp*<t w2 (1t '•

y(t-

ft. - r)'

G[y{r) |, f" G[y{r)\ f"■.) = -T7577 ^172 dr +
J0 7T {t2 ~ T) Jtl V - Ty

But since y{t) = 1 for ^ < t < t2 , it follows from Hypothesis B that G[y{r)] = 0 for

t, < r < t2 . Therefore the last equation reduces to

f" .i <- f" Gfrto] .7 -i
VKh) — / ^1/2f I \ 1/2 / 1/2/. \ 1/2 ClT — 1,

J o IT \l2 T) J q TT \ti T)

since both integrands are positive for 0 < t < tt and t2 > ^ . This last conclusion that

y(t2) < 1 contradicts the earlier implication that y(t) = 1 for all t > tx . Hence our

assumption that y(tx) = 1 is impossible and we have that y(t) < 1 for all t > 0.

In order to prove that lim,-„ y{t) = 1, assume that this is false. Then by the non-

decreasing nature of y(t) we infer that there exists some number 8 > 0 such that y(t) <



1951] HEAT TRANSFER BETWEEN SOLIDS AND GASSES 183

1 — 8 for all t > 0. By Hypotheses A, B, and C this means that G[y{t)] > G[i — 5] > 0

for all t > 0. This means that

»«> > /:

~ 5] J _ <?[! ~ .1/2

■)I/2 dT - r(3/2) 1 •

But the right-hand side of the above inequality can be made arbitrarily large by taking

t sufficiently large. This contradicts the fact that y(t) < 1 for all t > 0. Hence 5 does

not exist and therefore lim,_„ y{t) = 1. This completes the proof of Theorem 11.

In view of this last result it is not hard to see how the hypotheses in Theorems 6,

7, 8,10, and 11 can be somewhat weakened. Let G[u\ be any input function which satisfies

a Lipschitz condition on the closed unit interval [0, 1]. Clearly, G[u] can be continued

outside this interval as an input function in such a way as to satisfy a Lipchitz condition

in the large. One such extension is shown below:

1 — u when u > 1,

GAu] — ((?[«] when 0 < u < 1,

<(?[0] — u when u < 0.

By Theorem 6 there is a unique surface temperature function, y(t), corresponding to

Gj , and y(t) is independent of the behavior of Gi outside the unit interval. Since, by

Theorem 11, y{t) < 1 for all t > 0, the uniqueness proof in Theorem 6 can be carried

thru without regard to the behavior of Gx outside the unit interval. Hence, the Lipschitz

condition assumed in Theorems 6, 10, and 11 need hold only on the unit interval.

Similarly, it is sufficient in Theorems 7 and 8 to require that G be analytic on the open

interval (0, 1) and satisfy a Lipschitz condition on the closed interval.

4. Summary. Recalling that the input function, G[U(0, <)] is simply the product of

the film transfer factor, /[t/(0, £)] and the term [1 — U(0, t)]/k we can summarize as

follows the results which we have obtained:

Conclusion 1. For any film transfer factor of physical significance, the heat transfer

problem stated in Sec. 2 always has at least one solution, U(x, t), for all x > 0, t > 0.

It can be constructed in the following way

T7/ A f G[U(0, t)] -x2 ,ui'■« = I „"■(< - ,)»exp dT
(8)

from the surface temperature function U(0, t) which must be a bounded solution of the

following nonlinear integral equation

U(0, t) = /' gff(°' r)i/2 dr. (6)
J 0 IT \t T)

Equation (6) always has at least one continuous bounded solution which satisfies the

inequalities 0 < U(0, t) < 1 for all t > 0, and having the property that U(0, 0) = 0.

From these inequalities it follows by applying the mean value theorem to equation (8)

that 0 < U{x, t) < 1 for all x > 0, t > 0.

Conclusion 2. If f[U(0, t)] satisfies a Lipschitz condition on the closed unit interval,

then we can add to Conclusion 1 that
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a) U(0, t), and therefore U(x, t), is unique.

b) i7(0, t) is non-decreasing for all t > 0.

c) U(0, t) < 1 for all t > 0.

d) lim,^„ [7(0, t) - 1.

Conclusion 3. If the film transfer factor is analytic on the open unit interval and

satisfies a Lipschitz condition on the closed unit interval, then we can add to Conclusion

2 that U{0, t) is analytic and monotone increasing for all t > 0.

Conclusion 4. If the film transfer factor satisfies a Lipschitz condition on the closed

unit interval, then {7(0, t) can be approximated uniformly, arbitrarily closely in the

large by the method of successive approximations defined in formula (14). Since the

successive approximations lie alternately above and below U(0, t), an upper bound for

the error in the nth approximating function is simply the difference | U„(0, t) — Un _[((), t) |

As a final remark we point out that the methods developed here in the treatment of

the surface temperature equation,

y(t) = f
Jo

G[y(r)j
- r)]1/2 dT (6)

are also applicable to a much more general equation,

y(t) = f K(t, r)G\y(r)] dr (33)
Jo

in which the kernel, K(t, t), need only be positive definite and satisfy appropriate in-

tegrability conditions. The theory for the more general equation (33) will be developed

in a later paper.
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