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STUDIES ON TWO-DIMENSIONAL TRANSONIC FLOWS OF

COMPRESSIBLE FLUID.—PART III*

BY

S. TOMOTIKA and K. TAMADA

University of Kyoto, Japan

13. The introduction of a second new hypothetical gas. In the foregoing sections, we

have investigated some transonic fields of flow by employing a hypothetical gas which

closely approximates the real gas during an isentropic flow in the transonic range.

Although such a hypothetical gas has a merit that the fundamental equation governing

its flow assumes a rather simple form and can be solved exactly in several cases, it has

the drawback that it can approximate the real gas obeying the isentropic law only for

a limited (transonic) range of velocities. Thus, the method of analysis as developed in

the foregoing sections has a rather narrow application; it can be applied only to nearly

uniform transonic flows.

In Part III, an attempt is made to develop a theory which is applicable even to a

transonic flow containing limited supersonic regions as well as stagnation points. For

this purpose, we have introduced a second hypothetical gas which is capable of repre-

senting the real gas subject to the isentropic law with a better degree of approximation

than that used in Parts I and II.

For the sake of convenience, we start from the linearized equations of motion in the

hodograph plane which are valid for any compressible perfect fluid. They can be written

in the following forms:

<Pw = —X\pe ,

(13.1)
f>e = iu, ,

where, as before, the coefficient X and independent variable w are respectively given by

x = - £ (I.Y = I (L _ i)
p \pq/ P \q c /

w
/Q

Eqdq-

(13.2)

Eliminating from Eqs. (13.1), we obtain the fundamental equation for determining

ip in the form:

+ Xhe = 0. (13.3)

The coefficient X in the second term can evidently be expressed as a function of w alone

by the use of the known equation of state of any gas together with Bernoulli's theorem.

The dotted-line curve in Fig. 20 shows the behaviour of X(w) for the case of the real

gas obeying the isentropic law, the value of y having been taken equal to 1.4 for air.

It is in general difficult to obtain exact solutions of the fundamental equation (13.3)

*Received March 14, 1949. Parts I and II of this paper appeared in this Quarterly January (1950)

and July (1950), respectively.
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with the coefficient X(w) for the case of the real gas. It is therefore suggested that the

function X(w) for the case of the real gas may be replaced by a simple approximate

function in order to reduce Eq. (13.3) to a tractable form. The most simple replacement

of X(w) by a suitable constant (as done by Chaplygin, Karman and Tsien), however,

is not appropriate for the investigation of transonic flow. In Parts I and II, we have

replaced the function X(w) for the case of the real gas by the tangent, as shown by the

Fig. 20.

chain-line curve in Fig. 20, at the point w = 0 (i.e. at the critical state q — c = 1) for

the purpose of dealing with nearly uniform transonic flow. In order to treat transonic fields

of flow containing stagnation points, however, it is necessary to make use of another

approximate function which can approximate more precisely the function X(w) for the

real gas.

In the following lines, we shall use a function of the form:

X{w) = a(l - be2""), (13.4)

where a, b and k are constants to be determined adequately. As will be seen presently,

the use of this function makes our fundamental equation (13.3) tractable.

We have conveniently determined the values of the constants a, b and k in (13.4)

in such a way that the curve of X(w) as given by (13.4) coincides with the corresponding

curve for the real gas to the order of their tangents at w = — ® (which corresponds to

the stagnation point) as well as at w = 0 (which corresponds to the critical state).

The expression for X(w) thus determined is given by

X(w) = a{ 1 - e2""),

with (13.5)
/ 2 Ym_1> (y + iY7+1)

a Vt + 1/ ' K \ 2 /

1)/(Y-1>

The full-line curve in Fig. 20 shows the curve of X(w) given by (13.5), by taking, as

before, y — 1.4 for air. It will readily be observed that this curve can satisfactorily ap-
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proximate the curve of X(w) for the real gas which is shown by the dotted curve in the

figure.

Now, as mentioned already, the form of the function X(q) defined by (13.2) depends

upon the equation of state p(q) of the gas concerned. Conversely, any given expression

of this function X(q) determines the equation of state of a corresponding gas. Thus,

by introducing, in the following analysis, a second new hypothetical gas, we take the

function defined by (13.5) as an exact relation valid for such a hypothetical gas, instead

of considering it as an approximation to the corresponding function for the real gas

obeying the isentropic law, and we shall deal, in an exact manner, with the field of flow
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of such a hypothetical gas, as done with the previous hypothetical gas in Parts I and II.

If we insert the expression for X(w) given by (13.5) into Eq. (13.3), we obtain the

fundamental equation for determining the flow of our new hypothetical gas in the form.

+ a{ 1 - e2"°)h» = 0,
with (13.6)

( 2 V/(7_u (y + lY7+I

° = ItttJ > « = (,-2-7
Before proceeding further, we shall now discuss briefly the properties of our hypo-

thetical gas. If we combine (13.2) with (13.5), we obtain the differential equation for

determining the equation of state p(q) of our new hypothetical gas. We thus have
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Solving this equation, by the method of numerical integration or otherwise, under the

conditions that p = 1 and p' = — 1 at q = 1, we have obtained the curve of p(q) for

our hypothetical gas as shown by a full-line curve in Fig. 21. It will be seen that this

curve of p(q) coincides with the corresponding curve, shown by a dotted-line curve, for

the real gas obeying the isentropic law, to the order of tangent at q = 0 and to the order

of curvature at q = 1. In this figure, the curves of r(g) for both our hypothetical gas

and the real gas subject to the isentropic law are also given by a full-line curve and a

dotted-line curve respectively, where t = eKW is a new variable to be introduced in the

following section.

14. A method of solving the fundamental equation (13.6). We now introduce new

independent variables t, /3 defined as:

(14.1)

r = e = exp

ya

Then, the fundamental equation (13.6) for determining the flow of our hypothetical

gas takes the form:

T2 irr + T^r + (1 — t) \pfif, = 0. (14.2)

It is evident that just as the fundamental equation for the isentropic flow of the real

gas does, this equation (14.2) changes from the elliptic to the hyperbolic type according

as r < 1 (i.e. q < 1) or r > 1 (i.e. q > 1), i.e. according to whether the flow is subsonic

or supersonic.

The characteristic curves of Eq. (14.2) are given by the equations:

-i 1
±03 ~ i3o) = \A2 ~ 1 - cos-1 - , (14.3)

T

where /30 is an arbitrary parameter.

To solve Eq. (14.2), we first assume that

i = nr)e~in\ (14.4)

with an arbitrary constant n. Then, we obtain an ordinary differential equation for

determining the function T(r) in the form:

^ <?T + ^ dT _ = (14 5)
(XT CiT

The general solution of this equation can be expressed in terms of Bessel functions.

Thus,

T(t) = AJn(nr) + BYn(nr),

where A and B are arbitrary constants. Hence, the solution of (14.2) which is finite at

r = 0 can be expressed in the form:

* = E AnJn(nr)e-in0, (14.6)
n = 0

where n and j4„'s are arbitrary constants.
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If now we make use of the integral representation of J„(nr) of the Bessel type,

namely1:

Jninr) = ^ {r1 exp [r(t - 1/0/2]}" y ,

the expression for becomes

*= in 0+) 5 ^{rl exp [r(* _ 1/<)/2 ~ #1}" f ■ (14-7)

Since, however, the series in the integrand:

f; ^„{ri exp [r(< - i/o/2 - ^ir
n = 0

is evidently the expansion of a certain function in powers of t~l exp [r(t — 1/0/2 — i3\,

the above solution can be generalized in the following form:

'-aS I"® 7-
with (14.8)

Z = r1 exp [r(/ — 1/0/2 — z/3j,

where F(Z) denotes an arbitrary function of the variable Z, and the path of integration

C should be so chosen that this expression for i/' may really become the solution of

Eq. (14.2).

In fact, inserting the above expression (14.8) for \p into the left-hand side of Eq.

(14.2), which is conveniently denoted by D(\p), we have

D(» = 2s/J[{l (, + i) + 1}zl]<ii-
Thus, it will be seen that in order that the function \p given by (14.8) becomes in effect

the solution of Eq. (14.2), i.e. = 0, the function:

A" {i (*+ "J + x}z %' (z = r exp [T(t ~1/0/2 ~i0J)

must take the same value at the two end-points of the path of integration C and that

in the case where the path C is a closed curve, it is sufficient that dF/dZ should be

one-valued along C.

15. A few fundamental solutions of equation (14.2). In this section, a few funda-

mental solutions will be constructed by applying the method explained above.

In the first place, we shall consider a solution which is obtained by taking the arbi-

trary constant An in the general solution (14.6) to be equal to 1/A", where X is a certain

positive constant. By comparison with the results obtained in §§8, 9 and 10 of Part II,

it is expected that such a solution will have a branch-point of order —1/2 at a certain

point in the hodograph plane, the position of the singular point depending however

upon the value of the parameter X.

'G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 1922, p. 20.
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Since An = 1/X", the function F in (14.8) becomes

F = ——
1 - e'

with (15.1)

z = ^(t - - \ogt - - log X.

Thus, if we denote the solution under consideration by , we have

i f tndt .X ' (15-2)
an J c <(1 — e )

where C is a path of integration to be so chosen that this if't.-i/D actually becomes the

solution of the fundamental equation (14.2).

Let t = t0 be a root of the equation z(t) = 0.2 Then, in the neighbourhood of the point

t = <0 j the integrand in (15.2) can be expanded in the following form:

1 1 1 + 0(1),

t(l — e ) t0{dz/dt)„la t - t0

and therefore it will be seen that the integrand has a pole of the first order at the point

t = t0, provided that (dz/dt),„u ^ 0.

It is readily found that if we take, as the path of integration C in (15.2), a small

closed curve enclosing only the point t = t0 but not any other singular points, the func-

tion ^(-i/2) given by (15.2) actually becomes the solution of the fundamental equation

(14.2). The value of the integral can then be obtained by evaluating the residue of

the integrand at the point t = t„ and thus, taking the integral along the path of inte-

gration in the positive sense, we have

, - 1 1
V(-1/2) —

t0(dz/dt),,lo 1 — (t/2)(<o + l/<o)

If we here put t„ = e'" for the sake of convenience, the expression for im becomes

ultimately

*C"1/2) = 1 - T COS 03 ' (15'33)

On the other hand, since t = t0 has been assumed to be a zero-point of the function

z(t) as defined by (15.1), we have z(t0) = 0, and when use is made of the above sub-

stitution t0 = e'", this equation becomes

13 — i log X+r sin co — co = 0. (15.4)

By eliminating co from the above two equations (15.3) and (15.4), we can express

in terms of r and (i.

2It may be remarked here that this equation has in general two different roots.

3It can be ascertained without difficulty that this ^(-1/2) really becomes a solution of the fundamental

equation (14.2).
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For a special set of values r„ , of the independent variables r, /3, the two equations:

fi — i log X + r sin co — co = 0,

(15.5)
1 — T COS CO = 0

are satisfied simultaneously,4 and the function ip 1,-1/2) as given by (15.3) becomes in-

finite. Thus, it is found that as has been expected from the outset, the solution ^(_1/2)

has a branch-point of order —1/2 at the point (r«, , (3„) in the r, /3 plane.

Elimination of co from the two equations in (15.5) gives the equation for determining

Too and /3„ in the form:

+ t|— log X ± \/l ~ tI =F cosh 1 = 0. (15.6)

In case when S 1, both \/l — r£ and cosh 1 (1/too) are real and therefore, separat-

ing the real and imaginary parts, we have

= 0,

  (15.7)
— log X ± -\/\ — tI T cosh 1 — = 0.

Too

From these equations it will be seen that the singular point of the solution in

the t, /3 plane is, in this case, situated at an isolated point t = on the axis 0 = 0.

The second equations in (15.7) give the relationship between the coordinate t„ and the

parameter X. The curve of r„ plotted against X is shown in Fig. 22, from which it is

1.0

0 1.0 X 2.0

Fig. 22.

readily found that in order to make r„ to have any value in the range from 0 to 1, it is

quite sufficient to take for X only a value in the restricted range from 0 to 1.

Further, for the hypothetical gas under consideration, we have, from (13.2), (13.5)

and (14.1),

M? ~ ?)=a(r2 ~ 1}"

4It is readily found that this corresponds to the case when (z),«,o = 0 and (dz/dl)t.t„ = 0, i.e. when

the two roots of the equation z(t) = 0 coincide with each other.
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Therefore, the Mach number M associated with the state at the singular point r =

rro , /3 = 0 is calculated by the formula:

M = — = Vl + apli-rl - 1). (15.8)
Coo

Next, we shall consider the case when r„ Si 1. In this case, both ~\/l — rt, and

cosh-1 (l/r„) are purely imaginary and therefore, by separating the real and imaginary

parts on the right-hand side of Eq. (15.6), we have the following two equations:

log X = 0,

(15.9)
T y/rl ~ 1 ± cos 1 — = 0.

T a

Hence, it will be seen that in the supersonic region where r Si 1, the singularity occurs

only at a particular value Xmai = 1 of the parameter X, and this time the solution i^(_,/2)

becomes infinite, not at an isolated point but along two curves in the r, /3 plane which

satisfy the second equations in (15.9).

Further, by comparing (15.9) with (14.3), it is found that these curves of singularity

are nothing less than the two characteristic curves passing through the point t = 1,

/3 = 0.
Thus, summarizing the above results we see that when the parameter X assumes a

value in the range 0 < X < 1, the singularity of the solution ^(_ 1/2) in the hodograph

plane (i.e., the r, 0 plane) occurs at an isolated point on the axis (3 = 0, but in the limit

X —> 1, the singularity is prolonged along the two characteristics passing through the

point r = 1, 0 = 0. This remarkable characteristic change of the singularity of the

solution occurring in the hodograph plane at the stage of transition from the subsonic

to the supersonic region is quite similar to what has been already found in Part II in

the case of the more simple fundamental equation (7.6) of the mixed type.

Lastly, we shall derive from the preceding solution >A(-i/2) another solution which

will have a branch-point of order 1/2 at a certain point in the hodograph plane.

Now, in general, the form of our fundamental equation (14.2) suggests that any

new solution can be obtained by differentiating or integrating one of the known solutions

with respect to /3, and as inferred from what has been pointed out in Part II, the order

of singularity of the solution thus derived would differ by unity from the order of the

original solution. Hence, the required solution, denoted by \f/am , can be derived from

the preceding solution ^(-i/2) given by (15.3) by integrating it with respect to /3, and

we have

, _ f d& _ [ 1 clw f
21 J 1 — T COS CO J 1 — T COS CO rfco/rf/3 J W W'

where use has been made of the relation dw/dfi = (1 — t cos co)-1 which can easily be

obtained from (15.4). It is thus found that the variable co itself is a solution having the

singularity of order 1/2.

On the other hand, the variable /3 itself also becomes evidently a solution of the

fundamental equation (14.2). Therefore, it will be seen from equation (15.4) that the

function r sin co becomes also a solution having the singularity of order 1/2. Thus,

denoting this solution by i/-(1/2) as before, we have
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(1/2) = r sin co. (15.10)

It can easily be proved that the singularity of these solutions ^(1/2> show also the char-

acteristic change as mentioned above, just as in the case of the preceding solution

As will be shown in later lines, we can discuss a uniform flow past an obstacle by

making use of an appropriate linear combination of the above solutions ^<-i/2) and \pam ■

16. An alternative method of solving the fundamental equation (14.2). In the

analysis developed in §14, we have used the integral representation of Bessel's type for

the Bessel function Jn{m) in (14.6). However, if, instead of employing the integral

representation of Bessel's type, we make use of the integral representation of Poisson's

type for J„(nr), we can develop an alternative analysis similar to the preceding one,

which enables us to calculate conveniently the limiting case of the incompressible fluid

flow.
Now, according to Poisson, the Bessel function Ju(nr) can be expressed in the form:6

/ /(V\» f* r

J»(nr) = T{n + l/2)r(l/2) Jo 6XP {iUT C°S 6] Sin2" 6 dd-

If we insert this expression in the right-hand side of (14.6), we have

\f/ = / ^ exp {—f/3} exp {it cos 0} sin2 6 J dd,
^0 n = 0 '

where B„'s and n are arbitrary constants.8

Thus, summing up the integrand into the form of an arbitrary function (?(er), as

done in the previous case, we get the general solution of our fundamental equation

(14.2) in the form:

\p = [ G(ef) dd,
Jo

with (16.1)

f(0) = log - — iff + ir cos 6 + 2 log sin 6,

where the path of integration from 6 — 0 to 6 = ir should be taken suitably in con-

formity with remarks which will be given presently in the next section.

We noAV consider a limiting case in which

T->°' \ r
>--> {(finite). (16.2)

n —* 0, ) M

Such a limiting case corresponds evidently to the case of the incompressible fluid flow,

and therefore, if we denote the corresponding limiting value of i by iiac , we have

•r/2

^nc. =2/" G(Wsm2d)dO,
Jo

with (16.3)
W = fe-'".

6G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 1922, p. 48.

6Like the previous constant X, this constant n is a parameter determining the Mach number of the

flow.
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We assume that the stream function ^ino. for a known incompressible fluid flow is

given by

lAino. = g(W). (16.4)

Then, substituting this in the left-hand side of (16.3), we have an integral equation for

determining the arbitrary function G in the form:

g(W) = 2 f G(W sin2 6) dd. (16.5)
Jo

If we put

W sin2 6 = x,

this equation reduces to the form:

gW) = f 1 dx. (16.6)
J° VW - x vx

This is nothing but an integral equation of Abel's type and the solution is obtained by

making use of the well-known formula as:

ew-i yTxj-r-W-ar
* OX Jo VX — W

(16.7)

Thus, if we put this expression for G into the integrand in the formula (16.1), we

shall obtain the stream function for the corresponding flow of a compressible fluid. In

the following lines, we shall give a few examples.

(a) As a first example, we consider the case in which

tin,. = g{W) = (1 - W)~u\

Putting this in the above formula (16.7), we readily have

7T 1 — X

Thus, inserting this expression for G in (16.1), we have ultimately

1 rT dd

t Jo 1 — et '
with (16.8)

f(0) = log - — z/3 -f ir cos 6 + 2 log sin 6.

(b) As a second example, we next consider the case in which

lAino. = g(W) = log (1 — W).

Substituting this expression for g{W) into (16.7), we get

0bd - - I (* - ') tan" (x - ') ' •
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Therefore, by (16.1), we obtain a solution of the form:

f = - 2 [' (fTt - 1)-1/2 tan"1 (e-f - 1)~1/2 do,
7T Jo

with (16.9)

f(0) = log - — z'/3 + ir cos 0 + 2 log sin 0.

17. Remarks on the path of integration for the integral (16.1). From the above

examples it will be seen that when any solution for the incompressible fluid flow reveals

singularity at the point W = 1, the integrand of the corresponding solution of the

integral form (16.1) for the compressible fluid flow has in general a singular point at

6 = 90 , where 0o is a root of the equation:

f(0) = log - — ifi + it cos 6 + 2 log sin 6 = 0, (17.1)

and the position of such a singular point 6 = 90 in the 0-plane varies with the values

of r and /3.

Now, it is well known that in case a singular point of the integrand of any function

defined by a definite integral moves across the path of integration with the variation

of a variable, the said function loses in general its analytic continuity with regard to

the variable. Therefore, in order that the solution (16.1) be capable of maintaining its

analytic continuity, it is necessary that the path of integration should be such a curve

connecting the two points 0 = 0 and 0 = v which can be deformed, with the variation

of r and 0, without being cut across by any singular point of the integrand (Fig. 23).

0V' 7 ' 7*N< • /

Plane

Fig. 23.

18. The singular point of the solution (16.1). Next, we shall discuss the singular point

of the solution ip given by (16.1), which corresponds to the singular point W = 1 of

the stream function ^ino. for the incompressible fluid flow.

Now, it is found that Eq. (17.1) has in general two roots, and the corresponding

two singular points of the integrand of ^ are usually situated in such a way that the

one, denoted by P, lies on one side of the path of integration, while the other, denoted

by Q, on the opposite side (Fig. 24). However, for a particular set of values of r, /3, which

will be denoted here by t» , /3„ as before, the confluence of these two singular points
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may occur. In this particular case, then, the path of integration must pass through the

confluent singular points, and the solution \p has a singularity.

Thus, it is found that the singular point (r„ , /3„) of the solution (16.1) is determined

by the two equations f = 0 and d£/dd — 0, namely:

log - — ifi + ir cos 8 + 2 log sin 6 = 0,
M (18.1)

— ir sin 6 + 2 cot 0 = 0.

Eliminating 0 from these equations, we obtain the equation for determining ,

(3& in the form:

/3» - i =F Vri ~ 1 + i log\ (1 =F iVrl ~ 1)} = 0, (18.2)
U". )

and this equation corresponds to Eq. (15.6) in the preceding analysis.

-5-Plane

Fig. 24.

After some calculations it can be shown however that this equation becomes in

accord with the preceding equation (15.6), if we take the value of the parameter n equal

to 2e~1\. Therefore, further development of the analysis can be made along the same

lines as in the case of Eq. (15.6), and we thus arrive at the conclusion that the singu-

larity of the present solution (16.1) has also the same characteristic features as those

of the preceding solution ^(_1/2) which have been described in detail in §15.

19. The solution giving the uniform flow past an obstacle. In the following lines, we

shall discuss the flow past an obstacle by making use of the two fundamental solutions

^(_1/2) and i/'(i/2) obtained in §15, namely:

- 1- 'cos„ •

(1/2) = rsinw, (19.2)

with

/8 — i log X + t sin co — co = 0. (19.3)

We put

co = r + is.
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Then, inserting this in the left-hand side of (19.3) and separating the real and imaginary

parts, we obtain the relations between r, /3 and r, s in the forms:

cos r sinh s '

s + log X

(19.4)

jS = r — (s + log X) tan r coth s.

In the first place, we shall examine a solution as expressed by the imaginary part

of ^(_i/2) given by (19.1), namely:

i   Tii i - (s + log X) tan r  

(-1/2) j i _ (,5 log coth s}2 + (s + log X)2 tan2 r

Putting the denominator equal to zero, we have the equations for determining the co-

ordinates To, , of the singular point of in the forms:

1 — (s„ + log X) coth sro = 0,

(s„ + log X) tan r„ = 0,

or

tanh s«, = s„ + log X,

= 0.

Thus, taking (19.4) into account, we obtain the result that

To„ = sech Soo , /J™ = 0,

and therefore it is seen that the solution \p under consideration has a singularity at the

point r = Too = sech sa , p = I3„ = 0.

Also, it will be shown without difficulty that \p is always equal to zero along the axis

/3 = 0 from t = 0 to t = r„ .

Along any streamline \f/ = const., we can in general express r as a function of s, with

the aid of (19.5). Therefore, if we substitute the function r(s) so obtained into Eqs.

(19.4), we can obtain the relation between t and (3 with s as the parameter. In other words,

we can thus obtain the flow pattern in the t, /3 plane, which is shown in Fig. 25.

In the next place, we shall consider a solution which is obtained by taking the real

part of ^d/2) as given by (19.2), namely:

i = R{^(i/2)} = t sin r cosh s. (19.6)

It can easily be shown that this solution possesses a branch-point of order 1/2 at the

same point (t = t„ = sech &■„ , /3 = /3„ = 0) as the preceding solution (19.5), and that

4> becomes always equal to zero along the axis (3 = 0 from t = 0 to t = t„ . In this case,

the flow pattern in the t, (3 plane becomes as shown in Fig. 26.

From these figures it is naturally expected that if we superpose the above two solu-

tions (19.5) and (19.6) appropriately, we can obtain a solution which would represent

the flow pattern in the hodograph plane (i.e., the t, (3 plane) as shown in Fig. 27(a),

and such a solution would give a required field of flow past an obstacle in the physical

plane as shown in Fig. 27(b), as would be expected from the physical meaning of the

hodograph plane.
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The superposed solution is expressed in the following form:

1
\I/ = I\ iKr sin co + ;

I. 1 — T COS (

with (19.7)
13 — i log X+rsinco — co = 0,

where K is a certain constant to be determined appropriately.

Fig. 25. ^(—1/2) Fig. 26. 1 /2)

/' Tp= cons*-

Fig. 27. (a) Hodograph plane. Fig. 27. (b) Physical plane.

If we determine the value of K in such a way that the leading edge of the obstacle

coincides with the point r = 0 in the hodograph plane, we have

K = iiH? * (19"8>
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In this case, it is easily found that the leading edge of the body becomes a stagnation

point and that the upper and lower surfaces of the body meet at a finite angle (2 \/a/k)t

there.

If, in the fundamental equations (13.1), we change the independent variables from

w, 0 to t, fi by the aid of (13.5) and (14.1), we have

<Pr = s/a{T — 1/t)^j ,

(19.9)
<Pt = y/a t\J/t .

Thus, putting the expression (19.7) for \p into the right-hand sides of these equations

and carrying out simple integrations, we obtain the corresponding velocity potential <p

in the form:

<p = y/arll—cos to) + -—S"1"
I \z / 1 — r ccCOS O)

(19.10)

We shall next consider the transformation equations from the r, /3 plane to the

physical x, y plane. In general, we have

dx = xv d<p + x+ d\p,

dy = yv d<p + y+ d\p.

Inserting in the right-hand sides of the well-known expressions for xv , yv , x# , y^ as

given in Part I, namely:

xf = - cos 0, Xj, = — sin 0,
9 pq

yv = - sin 0, y* = — cos 0,
q pq

and carrying out integrations, we obtain the coordinates x, y on any streamline \p =

const. = ipx in the physical plane in the following forms:

X = ["(-cose) dtp - f*'(—8ine) df,
J tp o 1 0 ' <p>-tpo

y = f (-sin 6) d<p + [ (— cos 0) d\[/,
* <p o '^-^1 ^0 \pQ ' o

(19.11)

where the point <p = <p0 , ip = 0 has been adjusted so as to correspond to the origin of

the x, y plane.

In particular, the coordinates on a particular streamline \p = 0, a part of which

coincides with the surface of the body, are calculated by the following formulas:

x = f (- cos 0) dtp,
Jv. \q /+.„

y=r(- sin 0) dip.
Jv.\q /*-o

(19.12)
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Since Eqs. (19.7) and (19.10) give the relations between <p, \p and r, /3 (and conse-

quently, between <p, \p and q, 6), all the integrands in the formulas (19.11) and (19.12)

can be expressed as functions of (p, Therefore, carrying out integrations, we can obtain

the coordinates (x, y) on each of various streamlines and the flow pattern in the physical

plane can thus be found.

20. Numerical computations. By assuming 7 = 1.4 for air, detailed numerical com-

putations have been carried out for three cases in which the Mach number M of the

characteristic
curve" V0.

Fig. 28.

undisturbed uniform flow is equal to 0.717, 0.745 and 0.752 respectively, paying special

attention to the state of affairs on the surface of the body, the corresponding values of

the parameter X being 0.542, 0.600 and 0.616 respectively. Here, M = 0.717 is the so-

called critical Mach number at which the maximum local Mach number in the field

-0.1

of flow becomes equal to unity. Fig. 28 shows the streamlines ^ = 0 in the r, (3 plane

for these three cases.

The coordinates (x, y) of the point on the surface of the obstacle in the physical plane
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have been calculated by the formulas (19.12). Denoting the chord length of the body

by I, the values of x/l and y/l are shown in Table II. The profiles of the obstacles for

the two cases in which M = 0.717 and M = 0.752 respectively are shown in Fig. 29.

The profile for the case M = 0.745 has been omitted, however.

It will be seen that there is a very satisfactory coincidence, especially in the forward

part as well as in the vicinity of the trailing edge, between the profiles for the three

cases, and therefore it may be assumed that the shape of the obstacle is fixed in spite

of the variation of the Mach number M of the undisturbed flow.

Values of the fluid velocity q on the surface of the obstacle have been calculated

Table II

M =0.717

(X = 0.542)

x/l

0
0.0299
0.0874
0.1399
0.1897
0.2376
0.2843
0.3299
0.3747
0.4000

0.4190
0.4632
0.5086
0.5563
0.6065
0.6590
0.7136

0.7704
0.8293
0.8904

0.9536
0.9861
1.0000

y/l

0
0.0104
0.0236

0.0330
0.0402
0.0455
0.0493
0.0518
0.0531
0.0533
0.0532
0.0520
0.0493
0.0450
0.0395
0.0333
0.0267
0.0199
0.0132

0.0070

0.0020
0.0004

0

0
0.686
0.793
0.854
0.898
0.927
0.951
0.972
0.989
0.997
0.999
0.988
0.947
0.896
0.853
0.817

0.785
0.757
0.729
0.704

0.682
0.672
0.667

M = 0.745

(X = 0.600)

x/l

0
0.0323
0.0943
0.1506
0.2040
0.2553
0.3051
0.3535
0.4008
0.4264
0.4472
0.4930
0.5385
0.5621
0.6142
0.6704

0.7298
0.7919
0.8569
0.9246

0.9954
1.0000

y/l

0
0.0106
0.0246

0.0346
0.0420
0.0475
0.0514
0.0539
0.0552
0.0553
0.0552
0.0541
0.0517
0.0496
0.0432
0.0357
0.0275
0.0192
0.0113
0.0044

0.0001
0

0
0.706
0.821
0.881
0.930
0.967
0.997
1.023
1.043
1.053
1.062
1.077
1.075

0.986
0.893
0.841
0.800
0.765
0.733
0.703
0.678
0.675

M = 0.752

(X = 0.616)

x/l

0
0.0338
0.0669
0.1274
0.1837
0.2375
0.2894
0.3397
0.3888
0.4367
0.4753
0.5217
0.5681
0.5730
0.5940
0.6502
0.7103
0.7736
0.8401
0.9098
0.9827
1.0000

y/l

o
0.0111
0.0191
0.0310
0.0396
0.0460
0.0506
0.0537
0.0556
0.0561
0.0555
0.0538
0.0506

0.0501

0.0475
0.0397
0.0311

0.0223
0.0137
0.0060
0.0005

0

0
0.709
0.780
0.862
0.917
0.961
0.994
1.022
1.048

1.069
1.083
1.097
1.067
1.000
0.938
0.864

0.815
0.777
0.742
0.709
0.681
0.676

and they are given in Table II, and the velocity distributions on the surface of the body

are shown in Fig. 30.

It will be seen clearly from Fig. 28 that when M = 0.752, the streamline = 0

becomes in contact with one of the characteristic curves of the fundamental equation

(14.2) at some point P in the t, (3 plane. In other words, the singularity J =

d(x, y)/d(q, 6) = 0 makes its first appearance at this Mach number at some point in

the field of flow in the hodograph plane, and the velocity gradient becomes infinite at

the corresponding singular point P on the surface of the body as shown in Fig. 30. We

shall denote by Ms the Mach number at which infinite velocity gradient occurs on the
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surface of the body and a trace of the so-called shock line (i.e., the singular point J = 0)

first appears, and call it provisionally "the shock Mach number" for the sake of con-

venience. Thus, for our obstacle we have M, = 0.752.

From Fig. 30 it will readily be found that the curve of velocity distribution does

not reveal any peculiarity even at the critical Mach number M = 0.717. But, it becomes

rapidly steeper in the vicinity of the point P as the Mach number increases until, at

the above-mentioned shock Mach number, it has an infinite gradient at the point P.

Fig. 30.

For still higher Mach number, two curves of singularity J = 0 grow up from the surface

of the body. Then, the theoretical field of flow becomes many-valued in the neighbour-

hood of such curves. At this stage, shock waves must form in the actual field of flow so

as to avoid the appearance of the many-valued region which is expected theoretically.

21. A comparison with observation. Quite recently, Hans W. Liepmann7 has meas-

ured the pressure distributions on the surface of a biconvex circular arc profile placed

in a high-speed wind tunnel. The dotted-line curve in Fig. 29 shows the biconvex profile

of thickness ratio of 0.12 used by Liepmann in his observations, by adjusting it, for

the sake of comparison, so as to have the same position of the leading edge as well as

the same maximum thickness with those of our profiles derived theoretically, which

have been shown by full-line curves.

From Liepmann's observed pressure distributions, we have calculated, by the use

of Bernoulli's theorem together with the isentropic law, the velocity distributions on

the surface of his obstacle in two cases in which M = 0.795 and M = 0.843 respectively.

The observed values of the velocity q thus found are shown in Fig. 30 by small black

circles and crosses respectively. It may be remarked here that at the former Mach

number M — 0.795, the first appearance of shock waves was observed. Taking account

7Hans W. Liepmann, The interaction between boundary layer and shock waves in transonic flow, J. Aero.

Sci., 13, 623-637 (1946).
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of the discrepancy between the calculated profile and the biconvex profile used in Liep-

mann's observations, it may be said that the agreement between the theory and ob-

servation is satisfactory.

It seems worth noticing here that (a) the observed position of the main shock wave

as appeared at an earlier stage falls within the many-valued region derived theoretically

in the above and that (b) the main shock wave inclined obliquely forwards as observed

by Liepmann, which is enveloping Mach waves starting from the inside of the field of

flow but not from the surface of the body, should be just compared with the curve of

singularity J = 0 found theoretically, which is as well an envelope of one family of

Mach waves starting from the inside of the field of flow.

Now, as will be seen from Fig. 30, the theoretical field of flow for the case in which

M = 0.745, for example, is evidently partially supersonic in limited regions, but is

still capable of being continuous and irrotational throughout the whole field of flow.

Hence, we arrive at the affirmative positive answer to the so-called Taylor's problem

enquiring about whether there is any theoretical possibility of the existence of a con-

tinuous irrotational flow of a compressible fluid past an obstacle such that it flows

uniformly at a great distance from the body and at the same time contains limited

supersonic regions in the neighbourhood of the obstacle; namely, the theoretical results

of our analysis show that when a body is placed in a uniform stream of a compressible

fluid moving at speeds less than that of sound, the local speed of flow can exceed that

of sound in some limited regions in the vicinity of the body without violating the irrota-

tionality as well as the analytical continuity of the flow.

In this connection, it may be emphasized that the solution used here of our funda-

mental equation (14.2) is expressed in a closed form but not in a form of infinite series

and therefore it is quite free from the question of convergence.

Lastly, it may be added that the theoretical results obtained in the above for the

flow of our hypothetical gas seem to be still valid, not only qualitatively but also quanti-

tatively, for the flow of the real gas subject to the exact isentropic law, because, in the

flow treated above, the maximum speed of flow exceeds the local speed of sound by

only about 10 per cent even at the so-called shock Mach number and consequently, our

second hypothetical gas as employed in the present Part III can approximate very

satisfactorily the real gas obeying the isentropic law throughout the whole field of

flow, as is seen clearly from Fig. 21.


