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MINIMAL PROBLEMS IN AIRPLANE PERFORMANCE*

BY

BORIS GARFINKEL

Ballistic Research Laboratory, Aberdeen Proving Oround

Abstract. We develop here the theory of operating an airplane so as to minimize an

arbitrary function of the end-values of the generalized coordinates. A propeller-driven

airplane is treated as a particle in equilibrium, subject to the forces of drag, lift, thrust,

and gravity. We assume that the specific fuel consumption is a function of the power

only, and that the available power is independent of the altitude.

The problem is shown to be of the Bolza type in the Calculus of Variations, with the

complications arising from the presence of inequalities, discontinuities, and variables

whose derivatives do not enter the problem explicitly. The Euler-Lagrange equations are

derived and discussed.

Notation. A subscript will sometimes denote an index, at other times the argument of

partial differentiation. A superscript dot will indicate differentiation with respect to the

parameter t. The Summation Convention will be observed. In referring to equations

decimals may be used; e.g. (59.4) is the fourth equation of the set (59). 8a is the Kronecker

delta.

1. Introduction. In the absence of lateral wind we shall treat the airplane as a point,

P, in a four-space, specified by the coordinates (T, X, Y, m). Here T is the time, X the

length of arc of a great circle of the earth, Y the altitude; and m the mass of the airplane.

The end-conditions prescribe the point of departure, P, , as = 0, X, = 0, Yx = 0,

m, = m (0), and some, but not all, of the coordinates of the destination, P2. We seek to

minimize some prescribed function, G, of the remaining coordinates of P2 . The following

types of problem are of obvious practical significance:

1) G = T2 , minimizing the time of flight,

2) G = —X2 , maximizing the range,

3) G = — F2 , maximizing the altitude,

4) G = — m2, minimizing the fuel consumption,

5) G = —X2(m2 — mmin), maximizing the "transport",

6) G = — (a + m2)/T2 , maxmizing the "profit".

Regardless of the nature of G, and the end-conditions, all problems lead to the same

set of the Euler-Lagrange equations. We shall derive the latter from the physical laws

governing the motion of an airplane.

2. The physics of the problem. The dynamical laws governing the steady motion of

an airplane are

r = D + mg sin <t>,

(1)
L = mg cos <£

where r, D, L are the thrust, the drag, and the lift, respectively, m the mass, g the accelera-
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tion of gravity, and 0 the inclination of the trajectory to the horizon. The drag coefficient,

CD and the lift coefficient, CL , are defined by

D = iCDSpv2,)

>, (2)
L = \CLSpu2 )

I

S being the "characteristic" area, p the density of the air, and v the air speed. CD and CL

are connected by a parabolic relation1

CD = A + Cl/B, (3)

A and B being a pair of constants.

The power delivered by the propeller is

NtH = tv, (4)

where N is the number of engines, e the "propulsive" efficiency, and II the power devel-

oped per engine, e is assumed to be an empirical function of the relative air density, <r,

e = e(o-). (5)

The specific fuel consumption, C, defined by

I? = -NCn, (6)

will be assumed to be an empirical function of II only;

c = C(n). (7)

We may impose the requirement that the lean fuel mixture be used if II < II*, and the

rich mixture if II > II*. At the transition point, II*, the function C(n), generally, has a

discontinuity.

The distribution of air density will be assumed to obey the exponential law

o- = p/po = e~Y/", (8)

|3 being a constant. The effect of wind and the effect of cowl-flaps have been treated in a

separate paper, and will not be considered here. A zero wind implies

^ = v cos <t>. (9)

The variables Y and II are bounded by the inequalities:

Y > o, nmin < n < nmai. (10)

The following simplifying assumptions are made:

1) The use of a supercharger makes the range of available power independent of the

mode of operation.

2) The trajectory has a gentle slope: cos <j> ~ 1.

1R. von Mises, Theory of Flight, first edition, 142.
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3. Choice of variables. We define dimensionless quantities «, 6, x, c, E:

-co = log (m/m0), 6 = log [Cl/(ABY/2],

(11)
7T = n/IIo , c = C/C0 , E = e/e0 ■

Here m0 is the initial mass, 6 is related to the angle of attack, e0 is the value of e at Y = 0,

and (n0, C0) is a pair of values satisfying (7). If C has a single minimum, as is generally

the case, we take

C„ = Cmtn . (12)

It is convenient to use the logarithmic variables £, r?, and the derived variables ij', g0

defined by

£ = log t, r) = log CTT,

(13)
t?' = (1 — 2go)v' = 1.

We note that at r — 1, or £ = 0

c — 1, dc/dir = 0, d2c/dir2 > 0,

v' = 1, 0o = 0

and

tj' >0, 0o < 1/2 for all (14)

The latter follows from the experimental fact that | dm/dT | in (6) is an increasing func-

tion of IT.

Dimensionless t, x, y are defined by introducing the scale factors /?0 , /3i , /32 :

T = j301, X = PiX, Y = 02y. (15)

It is convenient to choose

° Ne0U0 P'

?, -i (!)'""■ <>«>

02 = (3.

Two dimensionless parameters represent the aerodynamic characteristics and the

engine characteristics of the airplane:

a = gC0P/e0

(17)
b = (2mo0)3/2(£po)-I/2^1/45-3/4/iVeoII„.

Now the system of 11 equations (1-9) in 13 variables X, Y, m, v, II, C, e, a, t, D, L,

CD,CL reduces to a system of three equations,
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Eire" = x cosh 6 + y,

x = 6e«—(18)

co = acne",

where E(y) ~ 1, and can, generally, be represented as

E — e'v, k = const. 1. (19)

In the logarithmic form (18) is equivalent, in view of (13), (19), to

<t>i = K—« + V ~ 0) ~ log x + const. = 0,

<£2 = -co — ri + log to + const. = 0, (20)

<t>3 = log (x cosh 6 + y) + 77 — f - Ky - log co = 0,

»?(?) being a known function. Thus the five generalized coordinates, y{ , where

2/i = x, y2 = y, y3 = co, y5 = £, (21)

specify the state of the airplane in terms of its position, mass, the angle of attack, and the

power as functions of the time, y0 = t. Three non-holonomic equations of constraint, (20),

leave us with two degrees of freedom. These can be realized physically by an arbitrary

choice of 6, controlled by the "elevator", and an arbitrary choice of J, controlled by the

throttle. Among the transfinite set of the pairs of functions (6{t), £(£)) we seek that pair

which minimizes a prescribed function G(t2 , x2 , y2 , co2), subject to prescribed end-condi-

tions, and satisfying the differential equations (20).

4. Variational approach. We identify our problem with the Problem of Bolza2 in the

Calculus of Variations in the special form: "Required the arc ?/,(<) satisfying the equations

V< ,Vi) = 0; i = 1, • • • , n; 0, j = 1, • • • , m < n, (22)

and the end-conditions

$a(t2 ; yj(U)) = 0; a = 1, • ■ • ,r < m,

(23)
tl = const., 2/,(<i) = const.,

and minimizing the function G(t2 , yj(t2))".

In later sections we shall consider the effect of inequalities of the form \f/(t, y{) > 0,

and discontinuities of 4>0 with respect to y{ .

The solution of the problem is obtained by introducing a set of variable Lagrangian

multipliers, \p(t), a set of constant multipliers, na , and constructing the auxiliary func-

tions F, T, J as

F = , r = G + ,

(24)
/» t g

= F+ i
J t I

F dt.

2G. A. Bliss, Lectures in the Calculus of Variations, 189, e.f.
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By differentiation we obtain

dJ = [(r, + F — yjFtl) dt + (r„, + F„,) dyj]t, + (f»i — dt, (25)

since P, is fixed, and by = dy — y dt. Our problem is equivalent to that of minimizing J;

i.e. satisfying

dJ = 0, d2J > 0. (26)

Thus (25) splits into n Euler-Lagrange equations,8

F„-ftF, ,27)
and m + 1 Transversality Conditions at t2 ,

r„ + Pi = o, j = 0, 1, • • • , m, '28)

where we had set

Vi = Ft, , j = 1, , m,

(29)
Po = F — yiFilj , y0 = t.

We shall further assume that the end-conditions at P2 separate the variables yt ; i.e.

— yy ~ const. = 0, a = 1, • • • , r < m (30)

7 assuming r values in the range 0 < r < m. Then na exist, and can be eliminated from

(28), yielding m + 1 — r equations

Gul + Pi = 0, j ^ y, (31)

involving only the "free" variables; i.e., such yt as do not enter the end-conditions at t2 .

The n -\- m unknowns (y{ , X^) are determined by the system of differential equations

Fvi ■ ^ F6{ , i 1 ,''',71 5,

(32)
<Pn = 0, P = 1, • • • , m = 3,

whose order is generally 2n + m. In our problem, however, the order is depressed by three

circumstances: 1) y, in are soluble for y% , 2) there are n — m equations Fvt = 0,

k — m + 1, • • • , n, of (32.1), for the yt whose derivatives are absent in F, 3) X„ can be

eliminated, since F is a linear homogeneous function of . The resulting order is 2m — 1,

so that 2m — 1 initial constants must be furnished, m such constants are y, (0) = 0;

m — 1 additional constants may be chosen as ^(0), (3 = 1, • • • , m — 1, where we define

!7/s = \s/2Xm . (33)

These parameters. of our family of extremals can be determined from the condi-

tions of the particular problem. For, there exist r end-conditions, (30), and m + 1 — r

Transversality Conditions, (31), connecting the m + 1 quantities t2 , Xm(<2), g„(0).

'ibidem, 202, e.f.
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5. Euler-Lagrange equations. An extremal, generally, is compounded of arcs lying in

the interior of the admissible region \f/ > 0, and of arcs lying in the boundary \p = 0. In

view of the inequalities (10), prescribed in our problem, we must distinguish arcs of the

following types:

A) general case, t ^ const., y ^ 0;

B) flight under constant power, t = const., y ^ 0;

C) level flight, x ^ const., y = 0.

These arcs are joined together in accord with the Corner-Condition, discussed in

section 8.

In order to take into account inequalities ^ > Owe augment F so as to include the

constraints ^ = 0, by writing

£min f

<t> 5 — iy>

(34)

X4<f>4 = 0, X6$5 = 0,

and construct F = X^ , /3 = 1, • • • , 5, with the aid of (20), (33):

F = {(01 + 05 - K)y - (01 + 2gr2)co - 0i(0 4- 2 log x) +

I35)
• log (x cosh e + y) + (1 - 202)(tj - logw) - (1 =F 204)£}

The Euler-Lagrange equation in 6 is

gx{x cosh 6 + y) = x sinh 0, (36)

which, in vew of (18), is equivalent to

p = be(-3a+a)/2/E, 0, = - e~l/2 sinh 6 (37)
7T

p(o), y) being defined by (37.1). The Euler-Lagrange equations in x, y, u, £ can be simpli-

fied by eliminating from them x, y, co with the aid of (18), and then making use of (37)

and (13). On introducing the constant

a = | log 3 = coth-1 2, (38)

the final result can be written as

X3 sinh (6 — a)/Em" = const .,

£ log (\3/Eire") = | (0! + 05 - k),

[X3(l - 202)/acire"] = X3(0i + 2g2),

(39)

v'(g0 - 0s) ± 04 = 0.
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Moreover, since F does not contain t explicitly, there exists the integral F — yiFlil =

const.; i.e.,

XsCfiCi - 9?) = const., (40)

which we shall use in place of (39.3).

The Lagrange multipliers can be eliminated from (39) as follows. First X3 is eliminated

among (40), (39.1, 2); next gA, g5 are eliminated with the aid of (34). Then (39) becomes

02 = <7i + K sinh (6 — oi}/Exe",

(<7* - g«)(* - const.) = 0,

y{^L l0g sinh ~ «) j = 0,

K being a constant. Finally, gt and g2 are eliminated from (41.1,2), with the result

(g0ir — pe~e/2 sinh 6 — K sinh (6 — a)/Ee")(ir — const.) = 0. (42)

Equations (18) can be written, in view of (37), as

dt_ 1_
do) acire" '

djL = man m
da acT ' l4,3;

^ = ^(1_^cosh ,)
au> ac \ 7r /

6. Computational procedure. The airplane is represented by three constants a, b, k

and the function c(ir). These automatically define the functions

c = c(tt), g0 = g0(x), E = E(y), (44)

in view of (13), (19). We recall that gx , p are known functions of yt :

p = be~(3"+")/2/E(y), 9l = ^e'e/2 sinh 6. (37)
7T 7

Thus (41.3), (42), (43) is a definitive system of five equations, and determines t, x, y, 6, x

as functions of w, provided five initial constants are furnished. Three such constants are

t(0) = 0, x(0) = 0,2/(0) = 0, prescribed by the end-conditions; two additional constants

may be chosen as 0(0) and K, leading to a two-parameter family of extremals

Vi = yM) 6(0), K); i = 1, ••• , 5

Since t, x do not enter the system explicitly, the corresponding equations (43.1, 2) can

be split off, and done by quadrature after the solution for y, 6, tt has been obtained.

Thus in the general case, A, w ^ const., y ^ 0, our system of equations consists of

(37), (44), and
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djL = vL_ 2^cosh A
do) ac \ 7r /

~ log sinh (0 - a) + ^ (^ - k) = 0, (45)

g0ir = pe~"2 sinh 0 + K sinh (6 — a)/Ee".

A choice of 0(0) and K determines in succession x(0) and gi(0) from (45.3) and (37), so

that the integration may proceed.

In case B (45.3) is replaced by x = const., and K can be discarded. In case C, y = 0,

we have g, = tanh 6, and

p = be~3°'\

tt = pe~e/2 cosh 6, (46)

g0r = pe~e/2 sinh 6 + Ke~" sinh (6 — a).

Here a choice of K determines 6 and ir when y and oo are known. In both the special cases,

therefore, the number of initial parameters is reduced to one.

The parameters 6(0), K for a particular problem can be determined from the end-

conditions and the Transversality Condition at t2 . In order to make use of the latter it is

necessary to consider first the Sufficiency Condition and the Corner Condition.

7. Sufficiency condition. In the notation of Bliss the sufficiency conditions for a weak

relative minimum are I, III', IV'. Condition I is met by the solution of the Euler-

Lagrange equations. The strengthened Legendre-Clebsch Condition,4 III', is equivalent to

5zx K > 0, (47)

where z — (y,-, yk); j = 1, • • • , m, k = to + 1, • • • , n; i.e. the set of the highest deriva-

tives entering F, and Sz satisfy the differentiated equations of constraint,

SZi = 0, /3 = 1, • • • , m; i = 1, • • ■ , n. (48)

Applying (47) and (48) to (35) and (20), respectively, and eliminating 8yf, we are led to

the requirement that

Xs{^ (1 + 3e"29) hd' + 2V' £ («7„7r) > 0 (49)

be a positive-definite quadratic form. Since p, x, r\ are positive, we deduce

^3 0,

(50)

(50.1) is equivalent to

X.,(<2) > 0. (51)

'ibidem, 235.
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For, y- and y, are bounded by physical considerations, and gx , g2 are bounded in view of

(37) and (41.1). Hence, (39.3) implies that X3 cannot change its sign.

(50.2) restricts the range of t. Generally, g0ir has a single minimum at some value

i < 1. Then we construct a new lower bound, ir'min as

■vLn = max (xmin , ¥). (52)

As a numerical example, let us take

c — 4/(x + 1)(3 — tr), if t < ir* = 1.5 (lean mixture),

c = 0.5(tt +1), if 7r > 1.5 (rich mixture), (53)

Tmin 0.5, Tmia 2.0»

Then

ffo = t(t — 1)/(t2 + 3), ^7 = (ir2 + 6ir — 3)/(ir2 + 3)2 if x < 1.5,

g0 = t/2(1 + 2tt), ^ = 1/2(1 + 2if x > 1.5,

(54)

and (50.2) becomes

x2 + 9tt — 6 > 0

so that 7r = 0.638, and = 0.638.

Jacobi's Condition,5 IV' has received in our treatment only an empirical verification,

in the fact that the family of extremals covers simply the admissible region of space.

8. The Corner condition. Consider an extremal compounded of the branches El0 and

E02 joined at t = tn. If the junction point lies in the surface ^(2/0 = 0, then its coordinates

satisfy

tv, dy{ = 0. (55)

Now applying (25) to the two branches, respectively, and adding the results we obtain

the additional term

AJo = -[(Ap,-) dy,]to , j = 0, 1, , m, (56)

where we define the "jump" in any function, /, as

A/ = lim [f(t0 + e) - f(t0 - e)] = /+-/_ (57)
e—*0

If J is minimized it is necessary that A J0 > 0, subject to (55). This leads to A J„ = 0, and

Ap, - nivl ,

(58)
0 = >

a being a constant, and ph = 0. (58) can be regarded as an extension of the Weierstrass-

6ibidem, 258.



158 BORIS GARFINKEL [Vol.JlX, No. 2

Erdman Corner Condition.6 If we now impose the requirement Ayf = 0, dictated by

physical considerations, we shall have the system of equations

Apf = fiiv, , j = 0, • • • , m,

0 = ,

Atf, = 0, (59)

= 0, P - 1, m,

Fvt = 0, k = m + 1, • • • , n.

The last line gives the Euler-Lagrange equations in the variables yk •

Suppose Ew lies in the admissible region 4> > 0, and E02 lies in the boundary ^ = 0.

If F is of class C2 at t0, and satisfies the Legendre-Clebsh Condition, it can be shown that

the only solution of (59) is the trivial solution

Ay( = 0, A yi = 0, AXfl = 0, m = 0. (60)

This is the, so-called, Tangency Condition, which requires that all variables and first

derivatives appearing explicitly in F be continuous at the junction. Moreover, for the

branch E,n we have

h, ty< > 0, (61)

which, in view of (25) and dJ > 0, leads to the Convexity Condition,

Fv< ~ TfFn + Wv, = 0,

(62)

x(0 < o.

X(£) can be readily identified with the Lagrange multiplier of the constraint \f/ = 0,

entering the augmented function = F + The point at which X = 0 may be termed

the point of "inflection".

In our problem there are two inequalities \p > 0; (34) gives

= <t>4 ) = $5 •

Then (62.2) requires that X4 < 0, X., < 0. Since X3 > 0 by (50), we obtain from (33)

04 < 0, gB < 0. (63)

Now (39.4), in view of (14), yields

Qo ^ Ql if 7T TTmio >

Qo Ql if T*min ^ TT TTmax j (63)

J« < }2 if X = Tmax ,

''ibidem, 12, 203.



1951] MINIMAL PROBLEMS IN AIRPLANE PERFORMANCE 159

while (39.2, 1) leads to

— (gi — k) + -j- log sinh (8 — a) > 0 if y = 0. (65)
dc dco

The latter determines the point of inflection, beyond which minimal level flight cannot

proceed.

Application of the Corner Condition to the discontinuity at £ = £* will be made in

the Appendix.

9. Transversality condition. There are two inequalities affecting yf at t2: y > 0,

&W — oj > 0. Thus the function G in (31) is to be augmented by writing

G = G + i ac = 1, 2

= V, $2 = <*>„,»* — " (66)

V\V — 0, — co) = 0.

Then (31) becomes

G, — 2\aK sinh (6 — a)/Eire" = 0,

Gt — X3 sinh (6 — a)IE-Ke" sinh a = 0,

y(Gu + \3/Eire") = 0,

[G„ — X3(l — 2gf2)/ac7re"](ojmax — u) = 0,

upon elimination of ^ , fi2 with the aid of (66).

We shall now consider problems of the type G = ±yr , r assuming any one of the

values 0, • • • m = 3. Then Gvi = ±5r)- . Observing that a, a, w, t, c, E are positive, we

deduce from (67) and (51) the following Table:

Transversality Condition at t.2

Free Variable If G = ?/,• If G — —yt If Gvi = 0

y0 = i K{d — a) > 0 K(6 — a) < 0 K(8 — a) = 0

yi = X 6 > a 6 < a 6 = a

y2 = y — — y = 0

2/3 ~ w (h < 5 ffa > 1 92 = i

or co = comax .

In the last column the variable yf is ignored at t2; i.e., it is an argument neither of G nor

of the end-conditions at t2 .

If the entire extremal is of the type B, w = const., then dt and du in (25) are no longer

(67)
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independent, but connected by do> = acire™ dt. As a result, the first and last rows of the

Table coalesce into

0i < 5, 01 > I, 0i = \ or w = a)ma* .

(68)

In applying the Table we make use of the following Remarks concerning minimal

curves:

1) "d and </, have like signs"

2) "K{6 — a) = 0 implies g, = g2 , and conversely"

3) "6 < a and > i implies y < 0"

4) "02 > i implies ir = 7rmax"

5) "g2 decreases in passing through the value \ provided g, > — 1"

6) "The quantities X3 , 6 — a and gx — g2 cannot change their signs"

The proofs depend on (37), (41.1), (43) and (38), (64) and (14), (39.3), (39.1) and (41.1),
respectively. In virtue of the Remarks 6 and 2 the first two lines of the Table hold for all

t tz .

We shall next illustrate the use of the Table by considering a few special cases.

10. Special cases. 1) Problems not involving the time.

Here G, — 0, so that gt = g2 , and K(d — a) =0 for all t, there being but a single

parameter, say x(0). In the case A (45.3) becomes

g0T = pe~e/2 sinh 6. (69)

In the case C, «/ = 0, (46) reduces to

7r = fre-(3" + ®)/2 cogh 0J

(70)
g0 = tanh 6.

Here

go = = 02, (71)

so that the number of parameters is reduced to zero; the family shrinks to a single curve,

which can be calculated by quadratures. For, eliminating 6 in (70) and (43) gives

a = | log ir4(l + 0O)3(1 - 0o) + log 62/3 = O(tt) + log b2/\

t — b 2/3 t(t) + k\ , (7 )

x = X(ir) + k2 .

t, X are functional of c(7r), and can be tabulated as functions of ir. h, , k2 are determined

from the initial conditions.

Let us next consider the problem of maximizing the range, x, when t, y, co are ignored.

Then G = —x, and the Table gives

6 < a, K = <7i — g2 = 0 for all t,

y = 0, co = or 02 = i at ti .
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The alternative g2 = g>i = § at t2 must be ruled out if y{0) = 0. For, then g2 = gx > \

at t < t2 by Remark 5, and hence y < 0 by Remark 3, so that the inequality y > 0 is

violated. Thus our solution is the curve for which y = 0 when w = com„ .

2) Problems not involving the range.

Here Gx = 0, so that 8 — a for all t. Then (45) is to be replaced by

f2 - - ["l - 2(3)-" 4
aco ac L 7r |

(73)

Or - •Textr)(<70T - 3-3/V - £'/&") = 0,

where the constant K' = K sinh (6 — a) need not vanish.

Consider the problem of the most economical climb to a given altitude. We set

G = &>, G, = Gx = 0, and note that 8 = a, K' = 0 for all t. Hence (73.2) becomes

(g0TT — 3~3/4p)(x — TTextr) = 0. (74)

The first factor has only one root, t, , since x is a single-valued function of g0T by (50.2).

The solution of (74), subject to (64) is the point in the interval (xmin , xmaiE) nearest to xx.

Having determined x, we proceed with the integration of (73.1), obtaining the unique

solution of the problem.

Similarly, the problem of the fastest climb is solved by setting G = t, Gx = G„ = 0,

and noting that 8 = a, K' > 0 for all t, and g2 = f at t2 . Then from the Remarks 1, 5, 4

and the equation (68) it follows that for all t we must have x = xma*, gi < h-

11. Summary. The Euler-Lagrange equations, derived in section 5, can be readily

integrated by the procedure of section 6, leading to a two-parameter family of curves.

Such a calculation was carried out, for a typical airplane, by the Differential Analyzer at

the Ballistic Research Laboratories in 1948, using ten integrators. The complications

arising from the presence of inequalities and a discontinuity were easily resolved by apply-

ing the Corner Condition, discussed in sections 8, 12.

The family of curves so constructed represents the totality of solutions of all possible

problems under consideration. The process of selecting from the family the curve that

solves a particular problem is carried out by scanning the end-conditions and the Trans-

versality Condition at t2 . The latter is discussed and illustrated in sections 9, 10. The

Sufficiency Conditions for a weak relative minimum can be, generally, satisfied, as shown

in section 7.

APPENDIX

12. Effect of discontinuities. Applying the results of section 8 we consider the case

in which Eia lies in the region \p > 0 where ^ = 0 is a surface of discontinuity of F with

respect to the arguments of \p. Two possibilities arise:

a) ip is not a function of yk , so that \pvl = 0, and (59.2) drops out. Then the system

(59) reduces to n + 2m -f 2 equations among the n + 2m + 2 unknowns (At/,- , Ayf ,

AA(, , n), and may be expected to have a non-trivial solution at a given t = t0 .

b) is a function of yk, so that (59.2) contributes n — 0, over-determining the system

by one equation. Therefore, at t0 there exists, generally, only the trivial solution (60).

Then the extremal must enter the surface ^ = 0 by a continuous transition, and remain

in \p = 0 until it reaches some point t = t* , where a non-trivial solution exists. At that
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point there occurs a discontinuous transition, which could be termed "delayed refrac-

tion", or "reflection", according as = 0 is crossed or not.

In our problem a discontinuity occurs at the surface

* = (* -1 = 0

Since £ does not appear explicitly in F, we are dealing here with a transition of type b.

The system of equations (59), in view of (75) and (35), reduces to

(76)

A6 = A(firxx) = A(<72t) = A[(l - 2g2)/c] = 0,

(02 — 0o)(t — Textt) = 0.

From the last three equations of (76) we deduce

{<*-) l'-i i: - (* £)}f' - '■■"> =

- <*-> wi: (ct>- • <77)

(f727r) + = (02x)_ .

which, in conjunction with (64), determines x+ , (g2)+ , (fife)- • These three values are

invariant, being dependent only on the function c(x).

As an example, let us suppose that in (53) the discontinuity at x* is approached from

the "lean" branch of the curve. Then x_ = ir* = 1.5, c_ = 1.067, and the first factor of

(77.1), equated to zero, is

L5 0'5(t + 1) ~ 1-067 - 0.5tr = 0, if ir> 1.5,
7T — 1.5

whose root, x = 2.24, falls outside the admissible range of t. The second factor of (77.1)

leads to two solutions:

1) ""+ = ""max = 2, c+ — 1.5, (<72)+ = 0.232, (<7o)+ — 0.200,

Tr+ — TTmin = 0.5, C+ = 1.067, (ff2)+ = 0, (ff0)+ = 0.077,

the values of c and g0 being obtained from (53) and (54). Since only the first one of these

solutions satisfies (64), we take

x+ = 2, (<72)+ = 0.232, (<72)- = 0.309.

After entering the surface ir — x* = 1.5 (lean), the extremal remains there until g2 reaches

the value (g2)— At this point, which can be observed by means of (40.1) during the com-

putation, a delayed refraction occurs, x jumping to x+ = 2.


