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Noting the structure of p and 5; e.g., p, and p2, in terms of/ and g, we state an obvious

corollary of Theorem 3.

Corollary. Let |/<n>(<) | < e, | g(n) (t) | < e for n — 1, 2, 3, 4. Then J or t sufficiently

small, all the characteristic values of (2) are real.

It is also clear from the structure of p and q that less restrictive, although perhaps

more complicated, conditions on / and g than those in the hypothesis of the above

corollary will yield the same conclusion.

The author wishes to thank Professors W. Feller and W. R. Sears for suggesting the

problem and for helpful suggestions toward its solution.
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ON AN EQUATION OCCURRING IN THE HARMONIC ANALYSIS OF

VISCOUS FLUID FLOW*

By RICHARD BELLMAN (Stanford University)

1. Introduction. It was shown by J. Kampe de Feriet1 that the Fourier transform

z(w! , w2 , t) = ~2 J f fOc, y) exp [—i(wxx + w2y)] dx dy (1)

of the vorticity, ${x, y), associated with the two-dimensional flow of an incompressible

fluid extending over the entire (x,y)-plane, under mild conditions, satisfies the non-

linear integro-differential equation

Jtz(w! ,W2,t)= -v(Wi + w\)z(w1 ,w2,t)

(2a)

+ 2 f J [~"eI ~ 02W')z(fli, 02, t)z(e 1 + w1, e2 + w2, t) del de2,

and the boundary condition

z{wi ,w2, 0) = <t>(Wi , w2). (2b)

*Received November 8, 1950. The results contained in this paper were obtained in connection with

research sponsored by the Rand Corporation.

'J. Kampe de Feriet, Harmonic analysis of the two-dimensional flow of an incompressible viscous fluid,

Q. Appl. Math. 6, 1-13 (1948).
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It seems quite difficult to determine the properties of the solution of 2a for general

4>. Consequently, it may be of interest to indicate the following theorem which is an

analogue of the well-known result of Poincare and Liapounoff2 concerning the stability

of solutions of non-linear ordinary differential equations.

Theori m: If Max„, | 4>(w, , w2) \ is sufficiently small, there is a solution to (2a) and

(2b) which is unique, and satisfies the inequality

I z(w w f\ | < 8 Max | 0(u>, , to,) |
| Z(w1 , W2 , t) 1 < {l + v(w2 + w22)t]2 , W

for all Wt , w2 and t > 0.

From, this we conclude that the solution z = 0 of (2a) is stable.

By the expression "sufficiently small" we mean that there exists a constant c =

c(y) with the property that Max | <j> \ < c suffices to establish (3). The constant c may

be determined from the analysis below. However, we feel that the value of c obtained

in the course of our proof has no particular significance. At the expense of decreasing c

we can replace the exponent 2 on the right side of (3) by any arbitrary n.

While the general method, namely that of applying the technique of successive

approximations, is standard, the details are not as simple as might be believed upon

first viewing the equation. It might be expected that in place of (3) one could assert

| z(wt , w2 , t) | < Ci Max | <j)(wj , w2) | exp [—v(w\ + w\)t\, (4)

provided that, as above, Max,,, ] <j>(wx , w2) \ is sufficiently small. This result seems

difficult to prove, and it is quite possible that it is not true.

2. Proof of theorem. From (2) we obtain, assuming for the moment that the solution

exists,

z{wl ,w2,t)

= <t>(w! , w2) exp [—v(w\ + w"Z)t\ + / exp [— v{w\ + w22)(t — U)]J{z) dtx ,
Jn

(i)

where we have set

J(z) = 2 f [ (e,wl , efx) z(fl. + Wl,e2 + W2, t)z{6,, e2,t) dot de2.
J — CO J w2

This equation is solved by the method of successive approximations, by means of

the algorithm

za = 0(m>, , w2) exp [—v{w\ + w\)t\

Zn+i = 2o + [ exp [~v(wt + w22)(t - <i)]J(2„) dtx , n = 0, 1,
^0

(3)

The first step of the proof consists of showing that the sequence {z„} is uniformly

bounded by an appropriate function of wl , w2 and t, namely

' Zn ' - [1 + v(w\ + w\)tf ' n = 0>1' ■ ■ '

2R. Bellman, On the boundedness of solutions of non-linear differential and difference equations, Trans.

Amer. Math. Soc. 62, 357-86 (1947).
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for all Wt , w2 , t, where we have set, for the sake of convenience,

a = Max | <t>(wi , w2) |. (5)
ID

Throughout we shall use, without further mention, the following simple inequalities,

(a) e" < 1/(1 + x), x>0

(6)
(b) a/b < (1 + ax)/{ 1 + bx) < 1, b > a > 0, x > 0.

We turn now to the proof of (4). The result is clear for n = 0, since

| Zo | < Max U | exp [-„(«* + w%)t] < {l + v/2^ + ^ ^

< 4a/[l + v(wl + W2)t]2.

To treat the general case, we proceed by induction, assuming that (4) holds for n =

0, 1, • • • , N, and then proving it for N + 1. We first require upper bounds for J{zN).

Introducing polar coordinates,

di = R cos Wi = r cos 8

(8)
02 = R sin yf/, w2 = r sin 6,

/*» /»2t

J(zN) = 2r / sin — 6)zN{61 , d2 , t)zN{di + wl , d2 + w2 , t) dR d\f/. (9)
J 0 "0

Applying our inductive hypothesis,

I J{zn) I < 128a'r Jg jo [(1 + vRH)2-[\ + vt{R^2Rr cos (6> - <A) + r5)]5] dR d*

(10)
. 2 r f <ir 1

- Cia r Jo L(1 + vR2tf[ 1 + v(R - r)2tf\'

where Ci = 256ir.

This last integral is now split into three parts,

/»oo r*r/2 /»2r /»oo

Cir / = C{r / + c,r / +cs = + J2 + J3 , (11)
Jo •'O * r/2 "2r

which we discuss separately. We have, since r — R > r/2 for 0 < R < r/2,

c,r fr/2 dR „ 16c,r P dfl

1/1 - (1 + wr2i/4)2 Jo (1 + vr2tf < (1 + ur2(f J0 (1 + vR2tf

(12)
. c2r 1

< t1/2 (1 + vr2t)2 '

where

c2 = I6C1 [ ds/( 1 + vs2)2.
Jo
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Turning to J2 , we obtain

t < ^£1 r2 ^  <  24cjT 
J* ~ 2 r (1 + vr2t/4)2 - (1 + vrHf

Finally, since R — r > r for 2r < R < 00,

J <  C*M r dfi  c^r 1  , „
J* - " ■ 2"2 J,r (1 + vR2t)2 tl/2 (1 + vr2t)2 '(1 + vr2t)2 hr (1 + vR2t)2 tl/2 (1 + vrt)

where

c3 = Ci [ ds/(l + vs2)2.
Jo

Collecting the results,

I J{zn) | < a Vi + J2 + J3)

^ *rfe + c3)y 1 , _24c/_~|
- |_ «1/2 (1 + vr2t)2 + (1 + vr2t)2A'

Applying these inequalities to (3), the result is

I Ztf+1 | < I Zo I + [ exp [-vr2(t - <,)] I w) I dt,
Jo

4a | / , \ 2 [' exp [~w2(* - 01 ^ /1fi\
" (1 + w2£)2 + + Cs)a r 1 (1 + «A) W" (16)

  ^.2
2 2I ' exp [— vr2(t — <j)] dti

(1 + vr%)2

Then

'•-'I

I

(15)

+ 24 ClaY

The first integral may be written

ft ft/2 ft

r =r +r = /,+/,. (17)
J 0 J 0 J t/2

exp [— vr2(t — £])] dtt ^ r 2j/m f'/2 dU
(1 +^r2<1)2(01/2

(18)
i r" ^ c4

-oT —"
where

- (1 + vr2t/4)2 r I (1 + vrXYih)1'2 ~ (1 + w2*)2

c4 = 16 f ds/( 1 + vs)V/2.
* n

The second integral leads to
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_ [' exp \-w\t - QldU  r f 2, _
72-'i(/2 (1 + vr\mi/2 (1 + vr2t/2)2 J,/2 w yi ft,)1'2

4r f'/2 exp [— vr2t,] dt, , 4r f°° exp [— w2<i]f exp [— vr ^ 4r f°° exp [— vr tx\ dtt

2 Jo ft - i,)1/2 (1 + vr2t)2 Jo «x)1/2 l )*"*(! + vr2t)

<  — 
S (1 + vr2t)2 '

where

' e~" ds
c5

Jq

The second integral in (16) is broken up in like fashion into I3 , the integral over

[0, t/2], and Z4 , the integral over [t/2, £]. The first integral satisfies the inequality

7, < r- exp [—vr't/2] [ , (20)

where

ca — 16 f ds/(l + vs)2,
J 0

while the second satisfies the inequality

h < c?/( 1 + vr2t)2, (21)

with c7 = 1/v. Collating these results, we obtain

^ 2

zN+, | < (! vf2t)2 + (1 +vr2t)2 Ca^Ci 24ci<~c,i + Cy^

(22)

<
8a

(1 + vr2t)2 '

provided that

a < 2/[(c2 + c3)(c4 + c5) + 24ci(c6 + c7)]. (23)

This completes the induction.

We must now show that zN converges to a solution of the original functional equation.

In the usual manner, this is accomplished by demonstrating the uniform convergence

of the series XXo (z»+i — z»)- From (2) we obtain

I Zi - z0 | < 2 ^ exp [-v(w\ + wl)(t - <01 I J&o) I dU < ^ • (24)

It now follows by induction, using the same procedure as above, that there exists a

constant c9 such that

I zN+i ~ Zn\ < (1(C^)yr2<)2 • (25)
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Hence if

a < Min [l/c9 , l/(c4 + c5 + c„ + c7)], (26)

we have uniform convergence of zN to a function z over the entire (wt , w2) plane and

the infinite ^-interval, 0 < t < It follows from the uniform convergence that we can

pass to the limit as iV —under the integral sign in (3), obtaining (1). Differentiation

of (1) yields the original equation.

The uniqueness is now established in the standard fashion.

BOOK REVIEWS

Table of the Bessel functions F0(z) and Yi(z) for complex arguments. Prepared by the

Computation Laboratory, National Bureau of Standards. Columbia University Press,

New York, 1950. xi + 427 pp. $7.50.

This volume supplements the earlier volume of tables of J0(z) and Ji(z) for complex arguments [see

Q. of Appl. Math. 2, 276 (1944) and 6, 95 (1948)]. The main tables give Y0(pe<v) and Yi(pe'v) to ten
decimal places for p = 0(.01)10 and <p = 0(5°)90°. Auxiliary tables give Y0(pe'v) — (2/ir)Jo(pe'v) log p

and Yi(pe'v) — (2/7r)./i(pe'>) log p + (2/irp)e~'v, the complex zeros of Bessel functions, and five-point

Lagrangian interpolation coefficients.

W. Prager

The inelastic behavior of engineering materials and structures. By Alfred M. Freudenthal.

John Wiley & Sons, Inc., New York and Chapman & Hall, Limited, London, 1950.

xvi +587 pp. $7.50.

The amazing scope of the book and its detailed coverage of so many facets of inelastic action bear elo-

quent testimony to the author's wide-spread reading and his own research. Quantum statistics, conven-

tional metallurgy, mathematical theories of plasticity, visco-elasticity, stress analysis solutions, and design

criteria for metals and concrete are all presented from a unified and extremely interesting point of view.

The reader is made to feel equally familiar with electron clouds, simple and complex mechanical models of

the behavior of real materials, Brownian motion, limit design, and testing machines.

The only objection to be noted is that little indication is given at the highly controversial nature of

the field. Opinions are often stated as facts. For example, this reviewer believes that much of the material

on thermodynamics and the mechanical equation of state is based on demonstrably over-simple and prob-

ably incorrect assumptions about the dissipated work. However, read with an open and skeptical mind

the book is invaluable.

D. C. Drucker

Electromagnetic fields. Theory and application. Volume I: Mapping of Fields. By Ernst

Weber. John Wiley & Sons, Inc., New York and Chapman & Hall Limited, London,

1950. xiv + 590 pp. $10.00.

The author has divided electromagnetic theory into static electric and magnetic fields on one hand


