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o (U1 + Kl s ) = (1 + iy e Bk

Ny - T — A4+ k)sn’ 1)
cn ([1 + kl]zl ’ kl) = dn (21 , l) (22)
n 3y - 1= 1 — k) sn’ (2, ; 1)
dn ([1 + kl]zl ) kl) - dn (zl ; 1)
then equation (20) may be written
) = & (2 3 k) + (k) sn (2, 3 k) 23)

Ten(z k) — (k) sn (2 ; k)’

where 2z, is given as in (1).

We observe that equation (23) is indeed the mapping function for a cross of equal
lengths, for it is a special case of equation (17), namely ¢ = 1.

The cross of equal lengths can easily be mapped into the cross of unequal lengths in
Fig. 2. We apply a linear fractional transformation which preserves the unit circle in
the two-sheeted plane. If the transformation

. G = (= D/(e+ 1)
= TT6 = D/t + DIGY @9)

is combined with equation (23), then equation (17) is the result.
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EFFECT OF A RIGID ELLIPTIC DISK ON THE
STRESS DISTRIBUTION IN AN ORTHOTROPIC PLATE*

By A. J. OWENS anp C. B. SMITH, (University of Florida)

A thin orthotropic plate of uniform thickness will possess two perpendicular axes
of symmetry in the plane of the plate. An infinite rectangular plate of this type con-
taining a rigid elliptic disk with major and minor axes coinciding with the axes of sym-
metry is discussed. A uniform tension is assumed to act along two opposite edges of the
plate and a mathematical analysis of the stress distribution is given. It is assumed the

*Received Feb. 21, 1951.
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strains are small and remain within the limits of perfect elasticity. The solution obtained
is applied to a plain-sawn Sitka spruce plate.

Choose as the origin of the coordinate system the center of the ellipse. The boundary
conditions may be stated mathematically using the notation of A. E. H. Love' as

Xo|osw =28, Y,|yorw=0,

)]
X, | mao = 0, X, | veo = 0,

and u(z, y) = v(x, y) = 0 on the circumference of the disk given by the parametric
equations z = a cos 6, y = b sin 6. The displacements in the « and y directions are
u(x, y) and v(x, y), respectively. S is the uniform tension applied at two edges of the
plate.

The components of stress and strain are connected by the following relations if the
z and y axes are taken as the axes of elastic symmetry of the orthotropic plate:*

pmfoly sy @
tw=g = —E X g Ve, @)
e,,=% %3=M%VX”. 4

It is desirable to find a stress function F(z, y)* such that
X, = %fy@ v,=%% ama x-- azzgy. ®)

For the problem of a thin orthotropic plate in a state of plane stress F must satisfy the
differential equation*

a*F I'F 6‘F
o T 2K 5o a7 s+ 53 (6)
where
- mmy (L - %) @
n=e, and e=(E/E)". 8

A suitable stress function is
F= R{—4§ [1 @ — W)+ 1n (Z, + Wl)]
2‘)’1 2

+ 2_'3;2 I:% (2, — W2)2 + 'Yg In (Z, + Wz)]} ©)

Sy’
2¢*
1A. E. H. Love, A treatise on the mathematical theory of elasticity, Dover Publications, New York, 1944.

?H. W. March, Stress-strain relations in wood and plywood considered as orthotropic materials, Forest
Products Laboratory Rep. No. R1503, p. 2 (1944).
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where the symbol R { } denotes the real part,

A=A, +14,, B = B, 4+ 1B;, (10)
Zy=z+dan, Zy==z+1Bn, n=ey, (11)
W= (Zi - W,=(Z;—vw", (12)
vi=a® — %D, v; =a’ — B%D’ (13)

a = {K + (Kz _ 1)1/2}1/2’
and
8 = {K _ (Kz _ 1)1/2}1/2.
Using the transformation
K = cosh ¢,
(14)

a=¢"? and B = e ¥,

In order that the stresses may be single valued W, and W, are to be assigned values
so that the inequalities

|Z1+W1|§’Yl and |Z2+Wz|§72 (15)

are satisfied.
It follows that

_F _ — A B
Y" - 6332 N R{Wl(zl + Wl) + Wz(Zz + Wz)}’ (16)

= Q2_F_' — a’é 3262 }
X, = an’ R{WI(Z, + W) + W.(Z, + W,) + 5, a7
and
_ __ OF _ iaeA -iBeB }
X, = —¢ oz o R{Wx(Zl T WY + Wiz, + Wl (18)

It can be shown that the exterior boundary conditions are satisfied so long as 4 and

B are finite.
Substitution of the stresses given by (16) and (17) into (2) and integration gives

w = R{A[azéz + M:”:_.;l_] + Bli.ﬁ_ze_2 + &z][;]} + §§ + uo(y)

- E. T EZ + W, E. T B Z +w. ) TE T™Y
where u,(y) is an arbitrary function which can be shown to be identically zero. A similar
expression for v may be found by substituting the stresses in (3) and integrating. From

the conditions w = v = 0 on the boundary of the disk four equations are obtained which
uniquely determine A, , A, , B, and B, .

3G. B. Airy, Rep. Brit. Assoc. Adv. Sci., 1862.
¢C. Bassel Smith, Q. App. Math. 6, 452-456 (1949).
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It follows that
A2 = B2 = 0;

(a + ach)[Saa(l + €B%0,.) + Sbeo,.(€8” + 0.,)]

Al = a(e2a2 + ‘Tzv)(l + 62620'112) - 6(1 + 520‘20'1/:)(6262 + Uzu);

(19)

and

__ (a + Beb)[Sap(l + €a’c,.) + Sbeo,.(€a’ + 0,,)]
a(€e® + 0,,)(1 + €6%..) — Bl + €a’0,.)(€6° + 0.,)

The stress function is now determined and it can be shown that it contains as a
special case the stress function for an isotropic plate. Let a = b and set ¢ = 1. Then
from (6) it is seen that E, = E, . This is a necessary condition but not a sufficient condi-
tion that the plate in question be an isotropic plate. For the isotropic case, it is now
sufficient that ¢ — 0; since by (14) K — 1 and (6) reduces to the biharmonic equation
for the isotropic case. Parts of the stress function become indeterminate but they may
be evaluated by successive applications of L’Hospitals rule.

B1=

(20)
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Fic. 1. Variation of the shear stress component X, at points along the boundary of a rigid circular

disk of radius ¢ with center at the origin for a plain-sawn plate of Sitka spruce and for an isotropic

plate.—Ordinates: Ratio of shear stress component X, at points on the boundary of a rigid:circular
disk to S the normal stress at infinity.

=0.l

The stress function for a plate in a state of plane strain was also determined and it
was shown that it also contained as a special case the stress function for an isotropic
plate. It is interesting to note that using a different method Professor I. S. Sokolnikoff®
obtained the same stress function for an isotropic plate.

Consider now a large plain-sawn rectangular plate of Sitka spruce containing a rigid
elliptic disk at its center. It is possible to apply the results to a finite plate since the

§]. S. Sokolnikoff, Mathematical theory of elasticity (mimeographed lecture notes, Brown University,
1941) Chap. V.
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stress concentration is localized near the rigid disk. The z- and y- axes are parallel and
perpendicular to the grain, respectively.

Shear stresses are probably most important in producing failure in a wooden plate.
The shear stress given by (18) evaluated on the boundary of the rigid disk is

_ aeA, sin 8 cos 6
lososese  a’€b” cos® 6 4+ a®sin’ 0

X,

(21)
BeB; sin 6 cos
B°’b” cos® 6 + a’sin® 6

+

In Figure 1 the curve for Sitka spruce was plotted utilizing formulas (19), (20) and
(21). The isotropic curve was computed for ¢ = 0.3.

Throughout the Sitka spruce plate containing a rigid circular disk | Y, | is less than
0.03S. The maximum value of X, is 1.23S at the point (a, 0).

From these results, it is probable that, for S sufficiently large, failure in the plate will
occur approximately along the lines y = Z=a sin 774° = 40.976a with the crack be-
ginning at the edge of the disk.

BOOK REVIEWS

The mathematical theory of plasticity. By R. Hill. Oxford at the Clarendon Press, 1950.
ix + 356 pp. $7.00.

Time, temperature, Bauschinger, hysteresis, and size effects are all explicitly ruled out and the major
but not exclusive emphasis is on ideal plasticity. However, a wide range of topics is discussed in this
interesting and invaluable treatise. Mathematical proofs, experimental evidence and the practical evalua-
tion of theory are kept in excellent balance from the study of stress-strain relations, variational principles,
and the questions of uniqueness, to the solving of practical metal forming problems. A few relatively
simple elastic-plastic solutions are included for prismatic bars, and for thick cylindrical tubes and spherical
shells. However, most of the chapters deal with plastic-rigid techniques and solutions developed by
the author and E. H. Lee. An extensive discussion is given of the slip line fields for plane problems. The
necessity for complete solutions is stated strongly and repeated warning is given against the error of
thinking in terms of static determinacy only and not considering velocity conditions as well. A number
of interesting and truly amazing solutions are given in detail for which the configuration remains geo-
metrically similar as the plastic deformation proceeds. Among the miscellaneous subjects covered are:
machining, hardness tests, notched bars, normal and oblique necking, earing and anisotropy. Tensor
notation is used throughout without apology.

As is entirely proper for a book on the mathematical theory of plasticity, the physics of metals is
covered only by reference to treatises on the subject. A very brief Appendix on suffix notation, the sum-
mation convention, and hyperbolic differential equations is considered sufficient for the reader who is
assumed to be familiar with the elementary theory of elasticity.

The reviewer regretted to detect an apparent desire on the part of the author to have written a truly
definitive text at a stage in the development of plasticity when too many basically new facts are being
discovered. As the author himself is in the forefront of many of these developments he could have done a
greater service by indicating more clearly the needed fundamentally new directions rather than glossing
over our present shortcomings and often embarrassing lack of knowledge. He then might not have
allowed himself to get so worried by Southwell and Allen’s elastic-plastic solution for & notched bar that



