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THE TORSION AND STRETCHING OF SPIRAL RODS (I)*
By H. OKUBO

(Institute of High Speed Mechanics,
Tdhoku University, Sendai, Japan)

Synopsis
In this paper the torsion or the stretching problem for a spiral rod is treated theo-

retically. The equations of equilibrium expressed in terms of displacements are reduced
to forms which are independent of one co-ordinate. They are readily integrated for the
particular case where the helix angle is small, and the corresponding displacements and
stresses can be expressed in forms which contain three arbitrary plane harmonic func-
tions, determination of which is dependent upon the shape of the section. As an appli-
cation of the general solution, the problem for an elliptic section is solved explicitly.

Two-dimensional problems in elasticity have been studied extensively from early
times on account of their simplicity in stress analysis and their useful applications in
many engineering problems. For a similar reason, various problems of axially sym-
metrical stress distribution have been investigated by many writers.

In this paper we shall treat the torsion or the stretching problem for a spiral rod.
The stress distribution for this case is neither two-dimensional nor axially symmetrical,
and each stress does not vanish in general and consequently the analysis becomes some-
what complicated. But the problem is not a three dimensional one without any re-
striction, since if we rotate the co-ordinate axes about the axis of the helix so as to co-
incide with the fixed directions with respect to a section which is perpendicular to the
axis of helix, then the stress distribution referred to the rotating axes is the same in any
section.

Starting from the equations of equilibrium expressed in terms of displacements, we
shall introduce equations which are independent of the position of the section. The
differential equations of displacements are readily integrated for the particular case
where the helix angle is small. The corresponding displacements and stresses are ex-
pressed in forms which contain three arbitrary plane harmonic functions, determination
of which is dependent upon the shape of the section, and thus we can considerably
simplify the problem.

We shall take the axis of the helix as the z-axis, and shall denote the displacements
in the x, y, z directions by u, v and w, respectively. Then the equations of equilibrium
can be expressed in the forms1

(X + it) + mV2w = 0,

(X + M) + mV2. =0, (1)

(X + m) d-~ + nV2w = 0,

where X, /t are Lame constants and A is the cubical dilatation.

*Received November 16, 1950.
'H. Love, The mathematical^theory of elasticity, 4th ed., 1927, p. 133.
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We shall make the following transformation

x> + iy' = e>k\x + iy), (2)

where k is a constant which is related to the obliquity of the helix.
Let u', v' be the displacements in the x' and y' directions respectively. It follows that

u' + iv' = exk'{a + iv). (3)

Let us put the displacements in the form

u' = u^x', y') - ay'z,

v' = vx(x', y') + Otx'z, (4)

w = w^x', y') + I3z,

where a, (3 are constants. Using the expressions for the displacements in Eq. (4), we
obtain the cubical dilatation

. du . dv . dw dUi dvi . „ , , ,A = — + — + — = + kD3(wrf + p,dx dy dz dx dy

and

<?A dA , , 34 . ,— = -7-7 cos kz + r-7 sm kz.dx dx dy

Remembering the relation in Eq. (3), we have

V2u = {ViUi + A;2/3,(mi) — 2k2D2(v1)} cos kz

+ {Vfri + k^D^Vx) + 2k2D2(ui)} sin kz,

where the operators Dj , D2 and V x are

A = y'2 ^72 — 2x'y' d , + x'2 — x' — y'
dx dx dy dy dx dy

n _ > JL r JL V72 — ^ I d2
D* ~ V dx' X dy' ' Vl ~ dx'2 + dy'2

To satisfy the first equation in (1), we have

(X + fi) ~7 + + k'D.iuO - 2k2DM)} = 0,

(5)
(X + /.) ^ + /.{Vfo + k2DM) + 2k2D2(Ul)} = 0.dy

The displacements which satisfy the above conditions, also satisfy the second equation
in (1). From the third equation in (1) we have the relation

—k(\ -f- fi)D2(A) -f- m{ViWi -(- k2Di(Wi) -f- k2Wi} = 0. (6)
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Accordingly, Eqs. (5) and (6) are the equations of equilibrium for this case. Inte-
grating these differential equations, we obtain vn , vl and io1 , which are independent
of z. Substituting them in the following equations

X'x' — XA + 2fJ. r ,
dUi
dx7

Yy' = XA + 2m 0 ,

(7)
= XA + 2/i(j3 — kD2(w1)),

(dlli , &/i\
+ d7)>

Xi = - kD2(u1) + kv, - ay'),

Y'z = m(^7 - kD2(Vl) - kUl + ax'),

we obtain the stresses, which are independent of z.
If we express the equation representing the bounding curve of the section by

Fix', y') = 0, (8)

the condition that the bounding surface of the rod is free from traction is satisfied if
the equations

w - kD*Wx', = 0,

x:' % + F"' w ~kD2{F) Y: = 0) (9)

w - kD'(F)z■ = °-
hold at all points of the bounding curve of the section.

Let us consider the equilibrium of a portion of the rod cut by two parallel planes
perpendicular to the axis of the helix. Since the stresses in Eq. (7) are independent of
z, the resultant of the shearing stress on each plane is the same in magnitude but gener-
ally different in direction; and from the condition of equilibrium of tractions, the resultant
of the shearing stress vanishes. The effect of the normal traction on each plane is static-
ally equivalent to a single force and a couple. The former can be cancelled by taking
the constant /3 so as to satisfy the condition

//
Z, dx' dy' = 0, (10)

and by a similar consideration, we see that the latter vanishes. Accordingly, the effect
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of all tractions acting on each plane is equivalent to a couple due to the shearing force,
and the solution which satisfies Eqs. (5) and (6) with the boundary conditions (9) and
(10) is the one for the torsion problem of the rod. If we determine a so as to satisfy the
condition that the moment of the couple due to the shearing force vanishes on each
plane, instead of employing condition (10), then we have a solution for the problem of
the stretching of a rod.

First, we shall consider the torsion problem. When k is small, ux , vx and A are small
quantities since they all vanish for a straight rod, and so if we neglect the smaller quan-
tities of the second order, the equations of equilibrium (5) and (6) can be written in
simpler forms as

t? + x+7 v;", *°-

S^ + x"+7 V'»' = »' <">

V?Wi = 0,
and the third equation of the boundary condition (9) becomes

X' —— -I- Y' —— — 0 (121dx' + dy' ~ { )

and the stresses X'z and Y[ become

x: - ,(f^ - ay), r: - + «*'). (13)
Accordingly, when k is small, the shearing stresses X'z and Y'z and hence the torque

acting on the rod are the same as those for a straight cylinder, but the other stresses
do not vanish as in the latter case.

Let us put
Wi = Ufa ~ Is), (14)

where f3 is an arbitrary function and/3 = f3({), f3 = /3(f), f = + iy' and f = x' — iy'.
Wi satisfies the third equation in (11). Substituting this expression for u>, into the first
and second equations in (11), we have

X -f- 2fi d2ut 32Vi . fi d2UtA t- 4/1 a ill , o V\ . M « «i J.rjv 1 j-' 1
T T T~75 T / ~r \ 1 a„/2 — KU3 + 73 T f/3 "T" ijs i>X + fi dx dx dy \ n dy

(15)
/* d vi 1 d ui 1 X 2^ d _ ;j.\ t>   f' 1 s- f"l

\ I »\ /2 1 / »\ / I -v I /2 1J 3 J 3 I S ./ 3 S •/3 J*a + n dx dx dy K + ix dy

The particular solution of Eq. (15) is

Mi = k J fit df + k J fad];, vt = 0.
Setting the right sides of Eqs. (15) equal to zero, we obtain the relations

ViV = 0, or Vt»i = 0, (16)
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from which we can put

Wi = fi + /i + x'(f2 + /2),

where fx and /2 are arbitrary functions of Inserting this expression for ux into (15),
we have

Vi = i(/i - fi) + ~ U) + i [/ /, df - / /, dr].
Accordingly, the displacements which satisfy the equations of equilibrium (11) can be
expressed in the forms

«' = fi + fx + x'(f2 + /2) + &[/ /sf + f fit dfj - ay'z,

v' = i(/i - /i) + ix'(f2 - fi) + i(2p + !)[/ ft d£ - J fi d}J + ax'z, (17)

w = i(f3 - f3) + fa,
and the corresponding expressions for the stresses are given in the forms

X'x. = 2ji{/i' + f'i + p(/2 + /2) + x'ifz + /2) + Htfs + f/s)} + X/5,

Y'y = -2 n{f[ + Ti + (P + 2)(/, + A) + z'(/2' + 71)} + to

Z, = -2M{(1 - p)(/2 + A) + k(tfi + }fl)\ + (X + 2M)/3,

x;, = 2^{// - f[ + x'(fi - f2) + (p + i)(/2 - f2) +1 (r/3' - r/a)
(18)

x; = /x{i(/3' - /a') - a?/'},

f; = -n{fi + Tl - ocx'},
where

At
V = X + n

As an example, we shall consider an elliptic spiral rod whose section is given by

x'2 v'2jr + fr-l. (19)
Let us put

2 fl = A0 + A2/2 = 5„ + B,f2, 2/3' = /if, (20)
where

2 7 2, a — b
h = ^2 , ,2

(J + o
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Substituting the expressions in (20) into (18), we obtain

X'x. = 2n{A0 + PB0 + 2BlX'2 + (A, + pB1 + kh)(x'2 - y'2)} + X/3,

Y'v. = -2n{A0 + (p + 2)B0 + 2BlX'2 + U. + (p + 2)B1](x'2 - y'2)} + X/3,

= —2M{(1 — P)B0 + [(1 - p)Bl + kh\(x'2 - y'2)} + (X + 2M)/3,
(21)

X[. = —2n{2 Ay + 2 (p + 2)B, + kh}x'y',

Xi = -»(h + a)y',

Y'z = a)x'.

From the boundary conditions (9) and (10) we obtain a system of simultaneous equa-
tions for the determination of the unknown constants A„ , B0 , Ai , and /3 as

+ ~2 B0 + Ai + (p + 2)BX + k~~2 + Jch = 0,
(X GL Jj^lCL

^ + ^^B0 -Al-(P + 2)5, -^2 = 0,

& + tf)Al + fe + + + = °' (22)

(1 - p)B0 + ^ ~ ^ [(1 - p)5x + M] - ^ = 0>

As a numerical example, we shall take the dimensions of the section as a — 2cm,
b = 1 cm and shall assume the values of the elastic constants as X = 8.66 X 10,5 n =
8.20 X 105 (unit Kg weight per cm2). Substituting these values into (22) and solving
the simultaneous equations, we find (unit ka)

A0 = -0.5786, Aj = -1.6793, B0 = 0.1156, B, = 0.4627,

/3 = 0.4500.

In our calculation, the constant ft does not vanish. Hence we see that when a spiral
rod is twisted, an axial elongation (or contraction) takes place. Substituting these
numerical values of constants into Eq. (21), we calculate the stresses on the x' and
y' axes, which are plotted in Figs. 1 and 2. In this case, the predominating stress which
is concerned in torque is X'z and its maximum amount is 1.6 p.a. While the predomi-
nating stress among the other stresses is the normal stress Z,, which attains its maximum
amount of 5.44 kfia at the points x' = ±2, y' = 0, as is shown in the figures. Accordingly,
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the latter can not be ignored compared with the former except in cases when k is ex-
tremely small.

The shape of the cross section is not deformed by twist in a straight rod, but in the

xjiia

Fig. 1. Stresses on x' axis.

Fig. 2. Stresses on y' axis.

case of a spiral rod the distortion of the section, as shown in Fig. 3, is caused by twist.
Next, we shall treat the stretching problem. For convenience of calculations, let us

put the displacements in the forms
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u' = u^x', y') — yx' — ay'z,

v' = v^x', y') — yy' + ax'z, (23)

w = Wt (x', y') + pz,
where

7 = \ (1 - p)/3.

When k is small, neglecting the smaller quantities of the order of k3, the further
calculations become quite similar to those of the previous case, viz., Eq. (11) is equally

Fig. 3. Distortion of the section.

valid for this case and the stresses are represented in the same forms as in Eq. (18),
except the following stresses

x,'. = 2n{ft + Tl + + !) + x'itt + 11) + usfi + ifl)},
= -2M{/x' + It + (p + 2)(/, + J2)+ x>{tt + fl)}, (24)

Z, = — 2M{(1 - p)(/a + Jd + MS ft + ~ \ (3 - p)is}.

For an elliptic section, we shall put

2 ft = Ao + A1f2, 2/2 = B0 + B,f, 2/3' = C„r. (25)
The corresponding stresses become

X'x. = 2n{A0 + pB0 + 2B1x'2 + (A, + pB, + kC0)(x'2 - y'2j},

Y'v. = -2n{A0 + (p + 2)B0 + 2Bxx'2 + [A, + (p + 2)B1](x'2 - y'2)},

Z. = — 2ju|(l - p)B0 + [(1 - p)B1 + kCo](x'2 - y'2) - \ (3 - p)p\,1 £ ' (26)



1951] THE TORSION AND STRETCHING OF SPIRAL RODS 271

X', = —2/x{2A1 + 2 (p + 2 )B1 + kC0}x'y',

x: = -m(Co + a)y',

Y! = -M(C0 - a)x'.

From the boundary condition (9) with the condition that the moment of couple due
to the shearing stresses vanishes, we have a system of simultaneous equations for the
determination of the unknown constants A0 , , B0 , Bx , C0 and a, as

(a2 - b2)C0 = (a2 + b2)a,

(a2 + b2)C0 = (a2 - b2){a + (3 - p)m,

jr + J50 + A, + (p + 2)SX + kC0 = 0,

(h+f>K + fe++f (?+!)+¥ (I- -*■)-«. (27)
p5 + B0- A1-(p + 2)Bj = 0,

If g is the mean value of the axial normal stress over the section, then

«- ds // z- ̂
E {(3 — p)i8 — 2(1 - p)50 - ha2 - 62)[(1 - jflB, + kCto]},

(28)

3 - p r ^ v u 2

where E is Young's modulus. From Eq. (28), /3 can be expressed as a multiple of q.
We shall consider an elliptic section of the same dimensions as in the previous

example. From Eqs. (27) and (28) we have

Co = 2.3565kfi, a = 1.4139*0, A0 = -1.8851ft2/?,

B0 = 0, A1 = —4.8148 k2p, Bt = 1.1783fc2/3,

and

E{ 1 - 1.7673k

Accordingly a twist arises when a spiral rod is pulled axially, since a does not vanish
in our calculations. The normal stresses X'x< , ¥'„■ attain their maximum value of 1.5
k2E(3 at the center of the section, and so they are very small quantities compared with
Zz . The normal stress Zz is distributed almost uniformlv over the section and it attains
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its maximum and minimum values of (1 + 2.356k2)Efi and (1 — 9.425 k2)Ef3 at both
ends of the minor and major axes of the ellipse respectively. The predominating stress
among the shearing stresses is X'z and it attains its maximum value of 1.5 IcEp at both
ends of the minor axis.

In conclusion, the writer wishes to express his thanks to Miss E. Itagaki, his assistant,
for her earnest help in this study.


