As for the speed with which the limit in (b) is approached, we get, again using Taylor's expansion, the following:

II. In I(b), the error is $O(t^3)$. If f has continuous fourth derivatives near P, the error can be made $O(t^4)$ by a further restriction on S. Whatever set S is chosen, the error cannot be made $o(t^4)$ even if the class of functions is restricted to polynomials.

References

- 1. L. Hopf, Differential equations of physics, Dover Publications, 1948, p. 62.
- 2. Garrett Birkhoff and David Young, Numerical quadrature of analytic and harmonic functions, J. of Math. and Physics 29, 217-221 (1950).

A NOTE ON ASYMPTOTIC STABILITY*

By H. A. ANTOSIEWICZ (Montana State College)

1. In this note we shall develop a stability criterion for a vector differential equation of the form

$$\frac{dx}{dt} = A(t)x,\tag{1}$$

where the elements of the matrix $A(t) = (a_{i,j}(t))$, $i, j = 1, 2, \dots, n$, are real continuous and uniformly bounded functions for all positive $t \ge t_0$.

A. Wintner** recently established the following criterion: Let $\lambda_1(t)$ be the greatest, and $\lambda_2(t)$ the least characteristic value of the matrix $\frac{1}{2}[A(t) + A'(t)]$, and let ||x(t)|| denote the Euclidean length of the vector x(t). If $\int_0^\infty \lambda_1(t) dt < \infty$, $\int_0^\infty \lambda_2(t) dt < \infty$, then $||x(t)|| \to \kappa \neq 0$ as $t \to \infty$ for every non-trivial solution x(t) of (1).

It is to be noted that the condition of integrability of $\lambda_1(t)$, $\lambda_2(t)$ over (t_0, ∞) implies $\int_0^\infty [\text{trace } A(t)] dt < \infty$. Furthermore, this condition automatically excludes the important case A(t) = const. unless A(t) = const. is skew-symmetric.

In the following we shall establish a stability criterion which is free of the above objection, i.e. which will also apply to the general case A(t) = const. We shall consider a condition to be satisfied by the matrix A(t) which will suffice to insure that ||x(t)|| of every non-trivial solution x(t) of (1) tends to zero as $t \to \infty$. According to Liapounoff†, the trivial solution $x(t) \equiv 0$ is then said to be asymptotically stable.

2. Consider a function V(x, t) which is defined and continuous for all x and t in R: $|x_i| \le c$, $t \ge T$ ($i = 1, 2, \dots, n$). If for equation (1) there exists in R a function V(x, t) which is of fixed sign and admits of an infinitely small upper bound, and for which dV/dt by virtue of (1) is opposite in sign to V(x, t) in R, then the trivial solution $x(t) \equiv 0$ of (1) is asymptotically stable. Liapounoff proved that the existence of such a function

^{*}Received April 16, 1951.

^{**}A. Wintner, On free vibrations with amplitudinal limits, Quart. Applied Math. 8, 102-101 (1950). †A. Liapounoff, Problème général de la stabilité du mouvement, Ann. Math. Studies, No. 17, 1949.

V(x, t) is sufficient for asymptotic stability; it is, however, not necessary as was shown by J. Malkin.*

We shall make use of Malkin's results to establish the following theorem:

Let $\lambda_1(t)$ be the greatest, and $\lambda_2(t)$ the least characteristic value of the matrix $\frac{1}{2}[A(t) + A'(t)]$. If $\int_0^t \lambda_1(\tau) d\tau \to -\infty$, $\int_0^t \lambda_2(\tau) d\tau \to -\infty$ as $t \to \infty$, then $||x(t)|| \to 0$ as $t \to \infty$ for every non-trivial solution x(t) of (1), i.e. the trivial solution $x(t) \equiv 0$ is asymptotically stable.

Note that now $\int_{0}^{\infty} [\text{trace } A(t)]dt$ diverges.

3. First, we transform (1) into diagonal form. Let $x_1, x_2, \dots x_n$ be a base of solutions of (1), and use this base to construct an orthogonal matrix C(t). If $y = C^{-1}(t)x$, then (1) reduces to

$$\frac{dy}{dt} = B(t)y, \qquad B(t) = C^{-1}AC + \frac{dC^{-1}}{dt}C \tag{2}$$

where the matrix $B(t) = (b_{ij}(t))$, $i, j = 1, 2, \dots, n$, is diagonal, i.e. $b_{ij}(t) \equiv 0$ for all i > j. If $y_1(t), y_2(t), \dots, y_n(t)$ is that base of solutions of (2) for which $y_i(t_0) = I^i$, the *i*-th column vector of the identity matrix I, then $||x_i(t)|| = ||y_i(t)||$ as is easily verified. Evidently, C(t) and $C^{-1}(t)$ have bounded elements and $|C(t)| = |C^{-1}(t)| = 1$; hence stability properties are preserved in both directions.

Observing that $C^{-1}(t) = C'(t)$ by construction, we find by differentiating the identity $C(t)C^{-1}(t) \equiv I$ that $(dC^{-1}/dt)C$ is skew-symmetric. Therefore $B(t) + B'(t) = C^{-1}[A(t) + A'(t)]C$, and thus the characteristic values of $\frac{1}{2}[B(t) + B'(t)]$ are identical with those of $\frac{1}{2}[A(t) + A'(t)]$. Hence it is sufficient to prove our theorem for the reduced equation (2). We shall show that there exists a function V(y, t) which satisfies Liapounoff's criterion for asymptotic stability.

Consider the diagonal elements $b_{ii}(t)$, $i=1, 2, \dots, n$, of the matrix B(t). Since $(dC^{-1}/dt)C$ is skew-symmetric, trace $(dC^{-1}/dt)C \equiv 0$, and thus

$$b_{ii}(t) = (C^{-1})_i A C^i = (C^i)' A C^i = \frac{1}{2} (C^i)' [A(t) + A'(t)] C^i.$$
 (3)

All diagonal elements of B(t) are quadratic forms in the components of the column vectors C^i of the matrix C(t) for which we evidently have $||C^i|| = 1$. These quadratic forms attain their maximum and minimum on the unit sphere $||C^i|| = 1$ (compact set); if $\lambda_1(t)$ is the greatest, $\lambda_2(t)$ the least characteristic value of $\frac{1}{2}[B(t) + B'(t)]$, then $\lambda_1(t)$ is the maximum, $\lambda_2(t)$ the minimum. From (3) we then obtain

$$\lambda_1(t) \ge b_{ii}(t) \ge \lambda_2(t) \tag{4}$$

whence for all $t \geq t_0$

$$\exp\left(\int_{t_0}^t \lambda_1(\tau) \ d\tau\right) \ge \exp\left(\int_{t_0}^t b_{ii}(\tau) \ d\tau\right) \ge \exp\left(\int_{t_0}^t \lambda_2(\tau) \ d\tau\right). \tag{5}$$

By hypothesis $\int_{0}^{t} \lambda_{k}(\tau) d\tau \to -\infty$ as $t \to \infty$, k = 1, 2, and thus

$$\varphi_i(t) = \exp\left(\int_{t_0}^t b_{ii}(\tau) d\tau\right) \to 0 \quad \text{as} \quad t \to \infty.$$
 (6)

As Malkin has shown, (6) involves for all $t \ge t_0$

$$\varphi_i(t) \int_{t_i}^{t} \frac{d\tau}{\varphi_i(\tau)} \le c \tag{7}$$

^{*}J. Malkin, Certain questions on the theory of the stability of motion in the sense of Liapounoff, American Math. Soc., Translation No. 20, 1950.

and (6) and (7) together, in turn, imply $\int_{0}^{\infty} [\varphi_{i}(t)]^{2} dt < \infty$. Hence the functions

$$\psi_i(t) = \left[\varphi_i(t)\right]^{-2} \int_t^{\infty} \left[\varphi_i(\tau)\right]^2 d\tau \tag{8}$$

exist for all $t \ge t_0$ and are uniformly bounded; in fact, $a^2 \le \psi_i(t) \le b^2$ where a and b are certain constants.

Now consider the function

$$V(y, t) = \psi_1(t)y_1^2 + \psi_2(t)y_2^2 + \cdots + \psi_n(t)y_n^2.$$

It evidently satisfies Liapounoff's criterion for asymptotic stability; it is a positive definite quadratic form, admitting of an infinitely small upper bound, and its derivative, by virtue of (2), becomes

$$\frac{dV}{dt} = -(y_1^2 + y_2^2 + \cdots + y_n^2) + W(y, t)$$

where W(y, t) is a quadratic form whose coefficients depend upon those elements $b_{ij}(t)$ of B(t) for which i < j, i, j = 1, 2, \cdots n. Since these elements can always be made sufficiently small by a transformation with constant coefficients (which will not affect stability properties) the derivative dV/dt will be a negative definite quadratic form. Hence the trivial solution $y(t) \equiv 0$ of (2) is asymptotically stable, and therefore the trivial solution $x(t) \equiv 0$ of (1) is asymptotically stable. This establishes our theorem.

O. Perron* was the first to prove directly that the conditions

$$\varphi_i(t) \leq C_1$$
, $\varphi_i(t) \int_{t}^{t} \frac{d\tau}{\varphi_i(\tau)} \leq C_2$

are necessary and sufficient for the trivial solution $x(t) \equiv 0$ of (1) to be asymptotically stable.

CONDITIONS SATISFIED BY THE EXPANSION AND VORTICITY OF A VISCOUS FLUID IN A FIXED CONTAINER*

By J. L. SYNGE (Dublin Institute for Advanced Studies)

1. Introduction. In plane motion of a viscous fluid inside a fixed container, the expansion θ and the vorticity ω cannot be arbitrarily assigned. A necessary and sufficient condition¹ for the consistency of given θ and ω with vanishing velocity on the walls is

$$\int (\theta U + 2\omega V) dS = 0, \qquad (1.1)$$

^{*}O. Perron, Die Stabilitaetsfrage bei Differentialgleichungen, Math. Zeitschrift 32, 703-728 (1930).

^{*}Received April 17, 1951. This paper was written while the author was on leave of absence at the Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.

¹J. L. Synge, Quarterly of Applied Mathematics, 8, 107-108 (1950). The condition with $\theta = 0$ was originally due to G. Hamel, Göttinger Nachr. Math.-Phys. Kl. 1911, 261-270.