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As for the speed with which the limit in (b) is approached, we get, again using Taylor's
expansion, the following:

II. In 1(b), the error is O(t). If / has continuous fourth derivatives near P, the error
can be made 0(C) by a further restriction on S. Whatever set S is chosen, the error
cannot be made o(tl) even if the class of functions is restricted to polynomials.
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A NOTE ON ASYMPTOTIC STABILITY*
By H. A. ANTOSIEWICZ (Montana State College)

1. In this note we shall develop a stability criterion for a vector differential equation
of the form

I = *0*. («
where the elements of the matrix A(t) — (a< ,■(<)), i, j = 1, 2, • ■ • n, are real continuous
and uniformly bounded functions for all positive t ^ t0 .

A. Wintner** recently established the following criterion: Let \,(t) be the greatest,
and X2(0 the least characteristic value of the matrix + A'(<)], and let || x(t) ||
denote the Euclidean length of the vector x(t). If f°° Ai(t) dt < , f '° X2(<) dt < °°, then
|| x(t) || —> k ^ 0 as t —>°o for every non-trivial solution x(t) of (1).

It is to be noted that the condition of integrability of Ai (t), \2(t) over (ta, 00) implies
J"°° [trace A (£)] dt <<*>. Furthermore, this condition automatically excludes the important
case A (t) = const, unless A (t) = const, is skew-symmetric.

In the following we shall establish a stability criterion which is free of the above
objection, i.e. which will also apply to the general case A{t) — const. We shall consider
a condition to be satisfied by the matrix A(t) which will suffice to insure that || x(t) ||
of every non-trivial solution x{t) of (1) tends to zero as /—>«>. According to Liapounofff,
the trivial solution x(t) = 0 is then said to be asymptotically stable.

2. Consider a function V(x, t) which is defined and continuous for all x and t in It:
] | ^ c, t 2: T (i = 1, 2, • • • n). If for equation (1) there exists in R a function V(x, t)
which is of fixed sign and admits of an infinitely small upper bound, and for which
dV/dt by virtue of (1) is opposite in sign to V(x, t) in R, then the trivial solution x{t) = 0
of (1) is asymptotically stable. Liapounoff proved that the existence of such a function

*Received April 16, 1951.
**A. Wintner, On free vibrations with amplitudinal limits, Quart. Applied Math. 8, 102-10-i (1950).
fA. Liapounoff, Problbme general de la stability du mouvement, Ann. Math. Studies, No. 17, 1949.
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V(x, t) is sufficient for asymptotic stability; it is, however, not necessary as was shown
by J. Malkin.*

We shall make use of Malkin's results to establish the following theorem :

Let Ai (f) be the greatest, and X2(0 the least characteristic value of the matrix J[A (t) -f-
A'(t)]. If /' Xj(t) dr —> — a>, /' X2(r) dr —» — oo as t —»oo, || ®(i) || —> 0 as i —>oo
/or every non-trivial solution x(t) of (1), i.e. the trivial solution x(t) = 0 is asymptotically
stable.

Note that now J" [trace A(t)]dt diverges.
3. First, we transform (1) into diagonal form. Let xx, x2, • • • xn be a base of solutions

of (1), and use this base to construct an orthogonal matrix C(t). If y = C'1{t)x, then
(1) reduces to

ft - B(t)y, B(t) = C~lAC + ^C (2)

where the matrix B(t) = (bu(t)), i, j = 1, 2, • • • n, is diagonal, i.e. 6,-,(0 = 0 for all
i > j. If Vi(t), y2{t), ■ • • yn(f) is that base of solutions of (2) for which yi{tQ) = F, the
i-th column vector of the identity matrix I, then || x,(i) |[ = || yi(t) || as is easily verified.
Evidently, C(t) and C-1(0 have bounded elements and | C(t) \ = | C_1(i) | = 1; hence
stability properties are preserved in both directions.

Observing that C~1(t) = C'(t) by construction, we find by differentiating the identity
C(£)C_1(<) = I that (dC'1/dt)C is skew-symmetric. Therefore B(t) + B'(t) = C-1[A(£) +
A'(t)]C, and thus the characteristic values of §[£(£) + B'(t)] are identical with those
of |[A(t) + A'{t)]. Hence it is sufficient to prove our theorem for the reduced equation
(2). We shall show that there exists a function V (y, t) which satisfies Liapounoff's
criterion for asymptotic stability.

Consider the diagonal elements bu(t), i = 1, 2, ■ ■ • n, of the matrix B{t). Since
(dC~1/dt)C is skew-symmetric, trace (dC~1/dt)C = 0, and thus

MO = (OiAC = (CyAC' = i(C')'[A(0 + A'(t)]C\ (3)
All diagonal elements of B(t) are quadratic forms in the components of the column vectors
& of the matrix C(t) for which we evidently have || C' || = 1. These quadratic forms
attain their maximum and minimum on the unit sphere || C" || = 1 (compact set); if
Xi(0 is the greatest, X2(<) the least characteristic value of \[B(t) + B'(t)], then Xx(0 is
the maximum, X2(0 the minimum. From (3) we then obtain

\i(t) S 6„(t) ^ X2(0 (4)
whence for all t ^ ta

exp (/!„ Xi(t) dr) ^ exp (Jj„ bu(r) dr) ^ exp (Jj„ X2(r) dr). (5)

By hypothesis /' X4(r) dr —> — oo as t —>oo, fc = 1, 2, and thus

Vi(t) = exp (/!„ 6,<(r) dr) »0 as t ->«>. (6)

As Malkin has shown, (6) involves for all t 2; t0

(7)Jt. <pM
*J. Malkin, Certain questions on the theory of the stability of motion in the sense of Liapounoff, American
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and (6) and (7) together, in turn, imply f°° dt <°Hence the functions

UO = [<pM'2 [ WMf dr (8)

exist for all t ^ t0 and are uniformly bounded; in fact, a2 :S ^,(<) ^ 62 where a and 6
are certain constants.

Now consider the function

V(y, t) = 'MO2/1 + ^2(02/2 + • • * + .

It evidently satisfies Liapounoff's criterion for asymptotic stability; it is a positive
definite quadratic form, admitting of an infinitely small upper bound, and its derivative,
by virtue of (2), becomes

^ = ~{y\ + y\ + • • • + yl) + W(y, t)

where W(y, t) is a quadratic form whose coefficients depend upon those elements bu(t)
of Bit) for which i < j, i, j = 1, 2, • • • n. Since these elements can always be made
sufficiently small by a transformation with constant coefficients (which will not affect
stability properties) the derivative dV/dt will be a negative definite quadratic form.
Hence the trivial solution y(t) = 0 of (2) is asymptotically stable, and therefore the
trivial solution x(t) = 0 of (1) is asymptotically stable. This establishes our theorem.

O. Perron* was the first to prove directly that the conditions

Ik c1 [' ^f- <C2
Jto <PAV

are necessary and sufficient for the trivial solution x(t) = 0 of (1) to be asymptotically
stable.

*0. Perron, Die Stabilitaetsfrage bei Differentialgleichungen, Math. Zeitschrift 32, 703-728 (1930).

CONDITIONS SATISFIED BY THE EXPANSION AND VORTICITY OF
A VISCOUS FLUID IN A FIXED CONTAINER*

By J. L. SYNGE (Dublin Institute for Advanced Studies)

1. Introduction. In plane motion of a viscous fluid inside a fixed container, the
expansion 6 and the vorticity w cannot be arbitrarily assigned. A necessary and sufficient
condition1 for the consistency of given d and w with vanishing velocity on the walls is

J (6U + 2wV) dS = 0, (1.1)
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