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and (6) and (7) together, in turn, imply [* [¢;(¢)]* df < . Hence the functions

W0 = O [ o) dr ®)

exist for all £ = £, and are uniformly bounded; in fact, a®* < ¢:(f) < b* where @ and b
are certain constants.

Now consider the function

Vi, ) = v:(Qyi + (v + -+ + .()y: .

It evidently satisfies Liapounoff’s criterion for asymptotic stability; it is a positive

definite quadratic form, admitting of an infinitely small upper bound, and its derivative,
by virtue of (2), becomes

%=-@+¢+m+m+wm0

where W (y, t) is a quadratic form whose coefficients depend upon those elements b,;(t)

of B(t) for which ¢ < 4,7, j = 1, 2, --- n. Since these elements can always be made

sufficiently small by a transformation with constant coefficients (which will not affect

stability properties) the derivative dV/dt will be a negative definite quadratic form.

Hence the trivial solution y(¢f) = 0 of (2) is asymptotically stable, and therefore the

trivial solution z(f) = 0 of (1) is asymptotically stable. This establishes our theorem.
O. Perron* was the first to prove directly that the conditions

td
¢d(t) =C ) %‘(t) ‘/; ;‘(TT) =C,

are necessary and sufficient for the trivial solution z(t) = 0 of (1) to be asymptotically
stable.

*O. Perron, Die Stabilitaetsfrage bei Differentialgleichungen, Math. Zeitschrift 32, 703-728 (1930).

CONDITIONS SATISFIED BY THE EXPANSION AND VORTICITY OF
A VISCOUS FLUID IN A FIXED CONTAINER*

By J. L. SYNGE (Dublin Institute for Advanced Studies)

1. Introduction. In plane motion of a viscous fluid inside a fixed container, the
expansion 6 and the vorticity w cannot be arbitrarily assigned. A necessary and sufficient
condition’ for the consistency of given 6 and « with vanishing velocity on the walls is

wa+%mm=m (1.1)

*Received April 17, 1951. This paper was written while the author was on leave of absence at the
Institute for Fluid Dynamics and Applied Mathematics, University of Maryland.

1], L. Synge, Quarterly of Applied Mathematics, 8, 107-108 (1950). The condition with 8 = 0 was
originally due to G. Hamel, Gottinger Nachr. Math.-Phys. Kl. 1911, 261-270.
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where U, V is any pair of conjugate harmonic functions and the integration is taken
over the region occupied by the fluid.

The purpose of the present paper is to extend this result to three dimensions. In
space we have expansion 6 and a vorticity vector w; (suffixes range 1, 2, 3 with the
summation convention), and the theorem which will be proved may be stated as follows:

Given expansion 0 and vorticity w; are consistent with vanishing velocity on the walls if, and
only f,

f (6P 4 w;Q,) dV = 0, (1.2)

where the integration s taken through the fluid, Q; being any (arbitrary) solution of the
partial differential equations

AQ; = Qi (1.3)
and P satisfying

P = 3eil.;. (1.4)

Here ¢,;; is the usual permutation symbol, the comma denotes partial differentiation
(Y, = aY/oz,), and A the Laplace operator, so that AQ; = Q... . In vector notation
(1.3) and (1.4) read V?Q = VV-Q and VP = 3V X Q.

This theorem will be considered only for simply connected regions. For such regions,
(1.3) are precisely the integrability conditions of (1.4), so that, given any solution of
(1.3), P exists satisfying (1.4), unique to within an additive constant.

2. Necessity of condition (1.2). Expansion 6 and vorticity w; are connected with
velocity u, by

u,‘,,' = O, eiikuk.i = 2(0,‘ . (2.1)

The problem of finding a motion with given 6 and w; in a region V, bounded by a fixed
surface B to which the fluid adheres, is the problem of solving the partial differential
equations (2.1) for u; with the boundary condition

u; =0 on B. (2.2)

The theorem stated above asserts that (1.2) is a necessary and sufficient condition on
6 and o, for the existence of this solution.

The necessity of the condition is easy to prove. We assume the existence of a solution
of (2.1) and (2.2).

By virtue of (2.1), it follows that for any P and Q; at all (not subject to any condi-
tions save those of smoothness) we have

[ 0P + 0.0y av + [ uP.i = 36u@0) 4V
= f [(ueP)..' 4+ 0.Q: — (%eiikuiQk),i + 3 enus Qi) AV (2-3)'

= f (n,'u,'P _%n,‘e;iku,'Qk) dB,
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the last integral being taken over the boundary B, on which 7, is the unit normal, drawn
outward.

Note that the above follows from (2.1) only. We now bring in (2.2). This makes the
last integral in (2.3) vanish. If we then subject P and Q; to (1.3) and (1.4), the second
integral in the first line vanishes, and we are left with the equation (1.2); the necessity
of (1.2) is thus established.

3. A lemma. The proof of sufficiency is harder. It rests on a lemma, for which the
proof offered here is not mathematically rigorous, resting as it does on the assumption
that a certain minimum is attained. A precise mathematical proof would of course have
to specify the requisite smoothness of the bounding surface B and of the tangential
component assigned on it (see immediately below).

Lemma: Given the tangential component of a vector Q; on the boundary B of a region V,
then Q; exusts satisfying (1.3) and this boundary condition.

To prove this (or at least make it plausible), consider the integral

1Q) = feiika,ieiuQs,r av. (3.1)

In vector notation, the integrand is (V X Q)® and cannot be negative. Thus for all
Q; satisfying the stated boundary condition, I(Q) is bounded below. We assume that
the minimum is actually attained by some vector field; let Q. be it.

Then, if ¢ is any constant, and ¢; any vector field with zero tangential component
on B, it follows that

IQ) < I(Q + cq), 3.2)

and hence by the usual procedure associated with Dirichlet’s principle,

fe;,'ka_,e;,,q,,,. dV = 0 (3-3)

for all such ¢; . This may be transformed into

f fnka.ifanmr dB — feiika,ireiraq; av = 0. (3-4)

But e;,.q.n, is the tangential component of ¢; , turned through a right angle, and so
vanishes. Further

€ik€irs = 0j10ks — 0;,0k, , (3.5)

and so we get
f (AQx — Qi,i)q AV = 0. (3.6)

Since ¢; is arbitrary except for the boundary condition it follows that the minimising
Q; satisfies (1.3).

As pointed out already, P then exists satisfying (1.4).

4. The sufficiency of (1.2). We assume that 6 and w; satisfy (1.2) for all Q; and P
satisfying (1.3) and (1.4). We have to prove the existence of a solution u; of (2.1) and
(2.2).
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Choose a particular solution of (1.3), (1.4): P = 1, @; = 0. Then (1.2) gives
[eav =o. 4.1)

Now choose P = 0, Q, = W, , the gradient of any scalar field W; these satisfy
(1.3), (1.4) without restriction on W. Then (1.2) gives

[ew.av =0, 4.2)
or
[onwaB = [w.wav =o. 4.3)
Hence, in view of the arbitrariness of W,
w;,: =0 inV, wn; =0 on B. (4.4)
We now try to solve (2.1) and (2.2). This we do in two steps, first solving the system
Ui, s = 0, €inthe,i = 20, , (4.5)
with the boundary condition
un; =0 on B. (4.6)

There is a well known procedure for this; we express u; in terms of a scalar potential
and a vector potential, and obtain for these certain Poisson integrals, yielding particular
solutions of (4.5). The problem of solving (4.5) and (4.6) is thus reduced to a Neumann
problem, and it is known that (4.1) and (4.4) are sufficient conditions for the existence
of a solution to (4.5) and (4.6).

The second step is to prove that the fangential component of this u; vanishes, the
normal component being already zero by (4.6). This is easy. Equation (2.3) is valid,
since it depends only on (2.1), i.e. (4.5). But the first two integrals in (2.3) vanish by
(1.2) and (1.4) respectively. Also the first part of the last integrand vanishes by (4.6).
So we are left with

fnie.-,-ku;Q,, dB = 0. (4‘7)

But e,;:n;Q; is the tangential component of @; , turned through a right angle, and
this, as we saw in the lemma, may be chosen arbitrarily. From this it follows at once
that the tangential component of u, must vanish on B.

Thus the solution of (4.5) and (4.6) is in fact the solution of (2.1) and (2.2). This
completes the proof of the sufficiency of tbe condition (1.2), subject of course to the
assumption that the minimum of (3.1) is in fact attained.*

*Added in proof, June 22, 19561: In recent papers which the author had not seen when the present
paper was written, C. Truesdell, Comptes Rendus Ac. Sci. Paris, 232, 1277, 1396 (1951), has given the
condition (1.2) with consideration of its sufficiency, and this condition has also been given by F. H.
van den Dungen, Q. Appl. Math. 9, 203 (1951), but the question of sufficiency has not been fully con-
sidered by him.



