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—NOTES—
A METHOD OF VARIATION FOR FLOW PROBLEMS—II*

By A. R. Man well (University College, Swansea, England)

Summary. The method of variation of reference [1] is developed afresh in a slightly
different manner which enables the main principle used in [1] to be derived directly
and also makes the actual calculations much simpler. It is shown how a variety of
problems concerning aerofoils possessing minimal properties may be reduced to the
solution of integro-differential equations which determine the mapping of the aerofoil
onto a circular region. It is briefly indicated how the method may be extended to three
dimensional flows.

1. Introduction. In [1] the author has given an elementary method of variation suit-
able for treating a type of extremal problems suggested by two-dimensional aerofoil
theory. Briefly, the method is to make small elliptic bulges in the boundary and after
calculating the changes of the flow functions to equate to zero the variation of the
functional which is to be minimized, for the case of infinitely flat ellipses. This process
was justified by appealing to the fact that for such flat bulges the velocity changes
as well as the geometrical changes were in effect infinitesimal. Such a physical argument
being not quite convincing the author also tested the principle by showing that all
small bulges in the hodograph plane gave equivalent results. It will however be seen
that it is quite easy to prove that for infinitesimal velocity changes, although not for
general perturbations of the boundary, the first variations may be equated to zero.

The results of the method appear in a conveniently compact form viz. as integro-
differential equations (sometimes just differential equations) from which the mapping
of the aerofoil on the standard unit circle may be determined. In some problems it is
necessary to make auxiliary restrictions on the aerofoil, such as limitations on the chord
or the velocity in the field.

In three dimensional fields the device of conformal mapping is of course not available
but, analogous to the above equations for aerofoil problems, the method yields certain
relations between geometrical and field properties on the boundary of the field. A dis-
cussion of the determination of the field from such conditions is left for a future paper.

2. The method of variation. In [1] the following principle was treated as physically
obvious:—

If a functional of the geometry of a closed curve and the velocities of an associated
hydrodynamic field is maximized by a certain curve, this functional is stationary for
all variations in which both physical coordinates and the velocities are changed in-
finitesimally.

On the other hand small bulges giving rise to finite changes of velocity will change
the functional by a small quantity of the first order. This situation may be illustrated
by the following simple case. It is easily shown that the ratio of the area of an ellipse
to the strength of the doublet, giving an equivalent disturbance in the stream at large
distances, depends on the shape of the ellipse. Let it be admitted that there is some
aerofoil problem in which the ratio of area to disturbance at infinity is stationary (c.f. §5).
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Then by taking two small ellipses of the same area it would be possible to find an equa-
tion corresponding to zero variation of area but a non-zero disturbance at infinity.
Equally one could determine a variation corresponding to no disturbance but non-zero
change of area. The ratio cannot be stationary for such variations. Further illustration
may be found in the detailed calculations of [1] for small elliptic bulges. It is also in-
teresting to note that, since velocity changes are finite, small elliptic bulges give some-
thing more than a second variation and so the sign of the changes is rather strong evi-
dence, although not proof, of a true maximum or minimum.

The principle at the beginning of this paragraph will now be embodied in a simple
lemma capable of direct proof.

Main lemma. If \p satisfies a second order partial differential equation of elliptic
type together with the boundary conditions on a simple closed curve C (and suitable
auxiliary conditions) whilst 7 is a functional of C, in the geometrical sense, and of the
velocities at points in the field and on C, then, for variations giving infinitesimal velocity
changes everywhere, SI = 0 if / is a maximum or minimum.

Proof. If a small perturbing stream function is added to \p it is readily seen that S\p
satifies a homogeneous linear partial differential equation and so, if S\p is a solution so
is — S\p. Now the new boundary C': \p + S\p ~ 0 is to be derived from C by drawing a
normal to C of length

' di~8n = — 6„ - "ft)." <2'I)
Except at the isolated stagnation points the velocity qs is not zero so the perturbation
is infinitesimal provided S\p is made zero at such points.

Geometrical changes may be expressed linearly in terms of Sn. For example, if A is
the area enclosed by C whilst L is the length of C and ds the line element

SA = f Sn ds, (2.2)
J c

SL = f K Sn ds, (2.3)
J c

where K is the curvature of C.
It is therefore clear that both the velocities at a given point and geometrical changes

are linear in S\p. This is also true of velocities on the variable boundary C and for the
present purpose this is more important.

Thus, the variation of velocity on \p = 0 may be found as the sum of :
(i) d/dn(5\p) calculated at C,
(ii) the change in the undisturbed field due to displacing C a distance Sn (i) is clearly
linear in S\p and (ii) is linear in on and so again in S\p. If (d2\p/dn2) c were zero then the
contribution would be zero to the first order. In fact, for elliptic equations, this case is
easily shown never to arise.

If therefore 7 is a maximum or minimum the existence of a — SI for every + 57
shows immediately that for such variations SI = 0 as in the better known geometrical
problems of the calculus of variations. Simple as the proof appears the result is not
trivial since it implies such results as those of §5 [1] which are difficult to derive by
direct calculation.
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3. Laplace's equation in two variables. Let z be the aerofoil plane, f that of the unit
circle and t that of the strip. For non-circulating flow, U being the stream velocity, the
complex potential is

w = ut = u<x + r1). (3.i)
A suitable perturbing function is

8w = Suit Onf"", (3.2)
1

where m is small and the an are real so that I(ow) = 0 on the real axis.
If the image in the f-plane of the disturbed boundary streamline C' is given by the

vector f = e* e[l + 57?] it follows that

BR = (3.3)2 sin 8

where

rj(8) = 2 an sin n8.

Following the method of the previous section, the change of velocity is the sum 8iV + S2v,
where

8iV = fi2 ^ nan sin nd/2 sin 8, (3.4)

S2v/v = - 8R(l + a) (3.5)

'y(O)

with

(3.5) being most conveniently found by writing

dw
dz

dw
dt

dz

and expanding numerator and denominator.
If C' is mapped on the unit circle j f' | = 1 in a new plane the complex potential is

known in two forms and by comparison of both it and the velocities on C' found from
the two methods it is quite easy to establish the relation.

dl M cot »' +log

where

2 sin 8'A8 = m2 S cosn0' and = e'6'.

These relations together with Poissons' formula for the function log (d^/di;') regular in
| f' | > 1 and with the real part given on | f' | = 1 determine the mapping of the new
region on the old. For applications however 3.3, 3.4, 3.5 are sufficient and involve only
one linear transformation of ij(0) whereas the explicit mapping requires three such trans-
formations.
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4. Aerofoils minimizing a surface integral. Let A be the area contained in C a sym-
metrical profile with axis along the stream and suppose

I = [ F(v) ds,

where v is the velocity on the boundary. Then J = IA~1/2 is non-dimensional and it
has been shown in [1] that for F(v) = kv with k constant J is a minimum for the circle.
In fact I is not changed by conformal mapping between the aerofoil and plane of the
circle but depends only on the potential function. The problem therefore reduces to
making A as large as possible under conditions for which the circle is well known to
be the result. It is natural to assume the existence of solutions for more general F and
the method of variation shows that these must satisfy a certain integro-differential
relation. From (3.5) since the equipotentials are normal to C it readily follows that
8(ds) — — 82v/v and so

dsi = dd dz
dt (1+««(! + «)} (4.1)

is the length of the element of the perturbed arc. Then 81 = f F'(v)Sv ds + / F(v) 8(ds)
becomes, after using (3.4), (3.5) and (4.1),

81 = f F'{v){8,v/v - 8R( 1 + a)}2 sin 6 dd + J F(v) SR(1 + a) 2sm^ede. (4.2)

Again

. f „t, dz 2 „ I" ... sin 6 dd8A = J 8R — dd = 2n J i?(0) —, (4.3)

so that if 8 J = 0, which implies

81 = K8A with K = | j,

the condition for a minimal solution may be written

[ H'(e)v(d)de= [ F'(v)Slve de, (4.4)
Jo Jo

where

H = J {[1 + a][F'(i>) — F(v)/v] + 2k sin 6/v2} dd. (4.5)

Then S^e , the change in the plane of the circle is with v(6) — ■n'(d) given by

8lVe = ^  -Mt) dt (4.6)x J0 cos t — cos 6

in which to make the operation on v possible it is supposed for example that v(t) possesses
a derivative.
Since r? vanishes at the stagnation points at the ends of the aerofoil 4.4 becomes after
an integration by parts
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f [' fm6 Mi) dt1 d6 + [' H(t)v(t) dt = 0. (4.7)
J0 Ltt Jo COS t — COS 0 J Jo

If now v(t) vanishes except in a small interval (4.7) gives

i rr-iyji-mt (
X Jo cos t — COS 6

where H is given by (4.5).
In the case F = kv H simplifies greatly and (4.8) gives

2k sin t Id), (1 — cos til{log (iv (t) ir dt { ° \1 + cos t/j tr sin t'

Hence v <*■ sin t and | dz/d'S | = constant showing that the solution must be a circle. The
following approximations are suggested in other cases.

(а) If the body is nearly circular a is small and the relation Eq. (4.8) is satisfied
approximately by

F(v) = v + a(ei>"" — 1) veb= 2 a sin 6,

where b is small. This gives one family of solutions.
(б) For thin flat aerofoils (1 + a) is small except at the ends and if F(0) = 0 the

term F — vF' = O(02) at the ends so that the equation reduces to

+ i r , o,
J V IT J0 cos t — cos 6

5. Problems with restrictions. In this section a brief account will be given of the way
in which the method can be modified to take account of certain restrictions peculiar to
flow problems. For example, let A be the area of a symmetrical profile and D the strength
of the equivalent doublet which represents the flow at large distances. As in §4

dA 1 2 f v
J0 si

v(0) dz
dt de, (5.1)sin d

and since SD is just the coefficient of in the perturbing potential 3.2

8D = — I sin 07i(0) dd
T

f sin 07/(0)
Jo

If no restriction is made the ratio D/A is stationary only if

dz
ft

2 . 2 .f dw= A sin 0 or ii —dz

is constant over the whole profile. This is possible only for a strip and to avoid this
trivial result, where a finite area would have to be extended indefinitely along the
stream direction, it is necessary to limit the aerofoil in this direction. The simplest
restriction seems to be that the aerofoil is not to lie outside of two lines drawn per-
pendicular to the stream. The ends then must lie on these lines and the method of varia-
tion is not applicable to such parts of the profile. Over the rest of the profile dw/dz is
constant as before and the complete solution is that the aerofoils belong to the Ria-
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bouchinsky constant velocity series [2]. In such cases the area must be regarded as
fixed and the theory of isoperimetrical problems used to establish the constant velocity
relation. For given straight lines, i.e. for a given maximum chord, the area completely
determines the solution.

In the last case the restriction was geometrical but it is also possible to limit velocity
instead of the chord. In the typical case there are constant velocity portions over the
middle of the aerofoil and the problem is to find perturbations of the whole boundary
which leave the velocity unchanged on these arcs, say the intervals (ir/2) ± X and
(37r/2) ± X for a symmetrical aerofoil. A simple method is to take a small bulge on the
free arc and then a general perturbation of the constant velocity arc. In the case quoted
this is achieved by way of the transformation.

t = f \ = sin \{s + (5.4)f

(5.5)

and a suitable disturbed potential is

w+Sw = u[ r + i + „2{r + 1/f 1 2 cos x +

where the a„ are to be determined by the integral equation for

jt(u) = ^2 nan sin nu

v{u) - —{1+«(W f' K(u, t)v{t) dt
VI — sin X cos u Jo

23 -J0-*= 1 _ 01 Yj nP" sin nu - G(u, x),

where
_ 2 ^ sin nu sin nt

tt i n

and

8 = sin X/{ cos x + y/cos2 x — sin2 X}.

In general successive approximation would be required on account of the presence of
a(d) in (5.6) but if the aerofoil is flattish or if X is small (5.6) gives v(u) directly to a good
approximation.

The author has carried out calculations for the problem of §3 with F = v but re-
quiring in addition that the maximum velocity is slightly less than twice the free stream
value. In this case small constant velocity arcs appear and the method of variation
gives the velocity over the rest of the profile. These solutions found by taking v(u) =
G(u, x) in (5.6) tend smoothly into the circle as X vanishes. It may also be noted that
the result of imposing restrictions may be to give mixed boundary conditions. For
example in the preceding problem if a curve of given area ir is required to lie between
y = where C < 1 the circle is replaced by a solution flattened so that y — ±C
over the middle whilst the method of variation gives the velocity over the ends. This
means that over one part of the aerofoil the magnitude, and over the other, the inclina-
tion of the velocity is given.
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6. Minimal problems in potential theory. In dealing with aerofoils it is natural to use
the conformal mapping of the region onto a circular one but this is only a device. As
the following shows the true significance of the method is that it gives a functional
relation between quantities on the boundary of the field. Moreover the linear trans-
formations which arise in the method may be more compactly explained in terms of
potential theory using Green's Theorem for the original and perturbing potential c.f. [3].

Let

" L "(«' I)ds'■ (6.1)

where 2 is an equipotential: <p = F and for simplicity it will be supposed that <p =
0(l/r) at great distances whilst Q expresses the dependance of F on the space-coordinates.
If (p is varied the new equipotential 2' is given by drawing from 2 a normal of length

Sn -[&p/
dip
dn (6-2)

Now 8(dS) = KSn dS where K is the total curvature of 2 at Q and the first variation is

81 = [ FK 8ndS+ f Fn 8n dS + [ FVn<pnn 8n dS + [ Fv„(Sf>)n dS (6.3)
J s J 2 Jx J?

suffixes denoting partial derivatives.
The last term involves (8<p)n but this may be expressed in terms of <S itself by intro-
ducing a new potential $ which takes the value of FVll on S.

Then, by Green's identity,

F„.(Se)„ dS = J £ ($) 8<p dS = - J 8n dS, (6.4)

according to (6.2).
Applying the fundamental lemma of the calculus of variations to (6.3) the condition
SI — 0 leads to

KF + Fn + Fv„tpnn ~ $n<Pn — 0. (6.5)

As a simple illustration let C be the capacity of an isolated conductor having a charge
which gives it a potential E above that at infinity. If V is the volume I = C/V1/s is
non dimensional.
Then

SV = [ SndS', (6.6)
■*2

and for the variations just considered

where

i^dS

is the change of charge on the conductor.
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Hence

iC-S!-i^dS

[ j?8<pdS
dn

— f M2rE~ J z \dn)SC=+4^F I SndS (6"7)

From (6.6) (6.7) since Sn is arbitrary the condition SI = 0 is

= const.
dtp
dn,

so that the surface must be such that electricity is distributed uniformly over its surface.
Thus if the solution were not known in advance this result would lead directly to the
sphere as the solution.

Conclusion. The method of variation of [1] has now been presented in a form in which
the author hopes it may be of practical utility. It is a direct method for aerofoils and
the numerical work in solving the equations which arise is not greater than in finding
approximate flows for given boundaries: in some cases much less. On the other hand it
is to be expected that for smooth changes from true minimal shapes no large changes
will appear. This is indeed an essential feature of all minimal solutions.

The author is indebted to Dr. W. H. J. Fuchs for explaining to him something of
the beautiful work of M. Schiffer [4] on minimal problems in conformal mapping. It
would appear that such problems as arise in analysis are far deeper than those needed
in aerofoil theory. In the latter the condition of simple boundaries does not enter except
trivially and since it is the essential condition in analysis the present method may not
be of any use. It is immediately evident that the proof of the main lemma of the paper
excludes cut regions where inward variations would require a second Riemann sheet.

The author also thanks Dr. P. M. Davidson for suggesting a variety of minimal
problems in potential theory and in particular the capacity problem of §6 to which he
originally gave this solution using instead of Green's identity for the potentials a phy-
sical interpretation of the problem together with the method of virtual work.
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