
361

ON THE NON-LINEAR VIBRATION OF ELASTIC BARS*
BY

A. CEMAL ERINGEN
Illinois Institute of Technology

1. Introduction. The classical theory of vibration of bars is based on certain restrictive
assumptions, namely: (a) the deflection is small; (b) supports are free to move in the
axial direction; (c) deflection is inextensional. In practice, however, very often some or
all of these assumptions are violated. Therefore, it is necessary to reformulate the
problem of vibration of bars in its general form without these assumptions so that the
domain of applicability of the classical theory can be well defined and problems to which
the classical theory is not applicable can be attacked.
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Fig. 1. Displaced element of beam.

Recently Woinowsky-Krieger [1] studied the effect of axial force on the vibration of
hinged bars. N. J. Hoff [2] gave an analysis for the effect of inertia forces on the buckling
of columns. In both of these analyses the classical treatment was improved by considera-
tion of the axial stress due to bending.

In the following analysis, first the problem of vibration of bars is reformulated
without any of the above-mentioned assumptions. Following that, a basic problem, free
vibration of elastic bars having immovable hinged ends, is solved with the use of the
perturbation method. The solution of this problem adequately describes those motions
in which the changes in axial tension, as well as in deflection, are not small.

Solutions of vibration problems concerning bars with other types of end conditions
and forced vibrations are left to a forthcoming paper.

*Received Feb. 15, 1951.
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2. Equations of motion. The equations of dynamic equilibrium of an element of the
beam deformed to a plane figure are (Fig. 1)

— pAu.,, + (N cos 6),x — (Q sin 6),x = 0,

— pAv,tl + (N sin 6),t + (Q cos 6).x = 0,
(1)

(1 + u,x) Jd,tl + M,x — Q[(l + u,x) cos 6 + v,x sin 0]

-f- iV[j;>a; cos 6 — (1 + u,x) sin d] = 0.

where p is the mass per unit volume, A the cross-sectional area of the beam, J the mass
moment inertia per unit length, N, Q, M are the axial force, the shear force, and the
bending moment at a point x, u and v are the deflections of any point x in the axial and
transverse directions, 6 is the angle between the tangent to the median line and the
x axis, and t is the time. In calculating the inertia forces, the effect of changes of mass
during motion is neglected.

The length element, ds, after deformation is given by

ds2 = Ik* + (V cos 6),xf + [1 + u,x - (y sin 0)i!t]2} dx2, tan 6 = v,x/(l + u,x). (2)

Indices after a comma represent differentiation. In deriving Eq. (2) the effect of shear
deformation is neglected.

Normal strain is defined as

6 = I - 1 <3>
Equations (2) and (3) are combined to yield

n f I ^ ,x 1 V ,x 1 / a \e = t — yd x , e =  t — 1 = ——- — 1. (4)y ■ ' cos e sin 6 w

Here, e is the strain referred to the median line of the undeformed beam.
Hooke's Law states that

a ' Ee. (5)

Thus,

N = J a dA = EAt, M = J ay dA = —EIdtX (6)

are calculated with the use of the first Eq. (4). Here I is the moment inertia of any
section about its neutral axis. The variation of I with time is neglected.

Equations (6) and the third Eq. (1) are combined to give

Q = + jg u cos (7)

The first two Eqs. (1) can be transformed into more suitable form by introducing
non-dimensional quantities and multiplying the second by i = y/—l and adding the
result to the first. The resulting equation is differentiated with respect to x. Thus,
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— [(1 + e)e*e],rr + e + ^A2^— i e ~t~ cos = 0,

r = (E/PL2)U2t, y = x/L, X2 = J/pAL2.

The second Eq. (4) may be transformed to

(8)

V + J. [wfo 0 + iv(x> 0 ~~ «(0, 0 — w(0, <)] = fo (1 + e)e*S dy. (9)

The first bracket in the first Eq. (8) represents the effect of translational inertia;
the first, second, and third terms in the brace are respectively the contributions of the
extension of the median line, the bending, and the rotatory inertia.

For X = 0 the first Eq. (8) reduces to the one obtained by Carrier [4] for the problem
of non-linear vibration of the elastic string, when t is replaced by (e — e0) in order to
include the initial tension.

Further, let
s = Xr = t(EIg/WL3)1/2, (10)

where W is the total weight of the beam. Equations (8), when separated into real and
imaginary parts, become

-A2e,ss + (1 + e)X20?. + - ed2v + - 2X21 + e (1 + e)
(11)

02
+ X'y^ - 2X40,SS„0,„ cos 0 + 2X 0,8S0,„ sin 0 - X' 0,ss0,„„ cos 0 = 0,

-2X2e,,0„ - (1 + £)X20,.. + 2e.„0,, + - X2 + 2X2 e J v""
1 + e ' (1 + c)

0
>2 yy" ,yy 0\ 2 ^ •+ X2 - 2X + X i "jf* + x40— cos 9 ~ 2X ». sin e (12)(1 + «) (1 + «) 1 + e

— 2X402„0,„s cos 6 — X40,„0,„„ sin 0 = 0.

Contrary to expectation, it can be seen that e = 0 is not a possible solution since
Eqs. (11) and (12) reduce to two independent equations for 0. Consequently, assumption
(c) of the classical theory is not valid. It can be seen, however, that this assumption
will be valid when e is a higher-order quantity than 0. Therefore, the classical theory is
obtained as a limiting case of the present theory for 0 —* 0.

3. Beams with immovable hinged ends. The boundary conditions for simply-
supported beams with immovable hinged ends are

0,„ = 0, u = v = 0 for y = 0,1. (13)

The perturbation parameter is chosen as X which represents the ratio of rotational
inertia to translational inertia. Reversal of the sign of X should reverse the sign of 0
but not e; 0 and e are therefore expanded into power series of X as follows

0 = X0, -|- X303 "I- X" 0.t -t" • ■ • , € = X2e2 "f- X4e4 + • • • . (14)
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The expressions for 6 and e are substituted into Eqs. (11) and (12) to obtain differential
equations and into (13) and (9) to obtain boundary conditions.

Differential equations

(X ): «2,„„ = 0,

(X). 64 iVV ^2,88 _ @1 ,8 ^@1,V@1.VVU ^i,w ^€262 ,yy ~i~ ^2^1, U J

(X6): •••, (15)

(X ). d\ i8S "f" Ol ,yyyy ^2^1,W ^^2 , V ̂1 , V

(X). 03,8s I ^S.yyyy ^2^3, yy 01 ,ssyy 2c2 ,$01,« ^^2^1,88

2^2 ̂ 1, WW "I- 2^2. y^l ,yyy ^2,yy01,»y @1,y ̂1 ,yy + 2*2,A.„

^^4 , y @1 , y "I- ^^2^2,y^l,y ~~l~ ̂4^1, yy -f- 3e20i,„B — 0,

(X7): (16)

Boundary conditions

at y = 0, 1: 0,-,„ = 0, (i = 1, 2, •••) (17)

(X): £ 0, dy = 0, (X2): £ (e2 - |) dy = 0,

(X3): J (e20, + e3 - | 0?) dy = 0, (X4): J (e4 - e2 ̂  - M. + |[) dy = 0,

(X5): , (18), (X6): ••• ; (19)

Initial conditions

at s = 0: = mirdo cos rrnry, 0,- = 0, 0,-,s = 0, e,-,s = 0,
(20)

(i = 1, 2, • • • ;j ^ 1)
The solution of the first Eq. (15) under the condition that e2(0, s) = e2(l, s) and

the first Eq. (19) is

62 = | £ el dy. (21)

Substitution of (21) into the first Eq. (16) leads to
1 f1

*i... + Si.yyyy ~ 3 #i.» / # = °" (22)
Equation (22) is solved under the boundary conditions (17) and the first Eq. (18)

for an initial sinusoidal deflection given by the first Eq. (20).
Let

0i = niTd0-S(s) cos miry, S(0) = 1. (23)
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Substitution of Eq. (23) into Eq. (22) gives the following differential equation:

S... + (mx)4S + HmT)%S3 = 0. (24)

Multiplying (24) by St. , a first integral can be obtained immediately. The resulting
equation is of first order and separable. Integration can be effected in terms of elliptic
functions. The result is

/ i y/*
0, = mirdo cos miry cn (a>iS, k), an = mV2l 1 + - 02J ,

(25)

fc2 = (2 + l) ' k= 111 + 4) K>
where cn and K denote the elliptic cosine and the complete elliptic integral of the first
kind; T1/T0 is the ratio of non-linear period to linear period. The use of Eq. (21) gives

e2 = \(mird0)2 cn2 (a>! s, k). (26)

Substitution of (25) and (26) into the second Eq. (15), integration, and the condition
e4(0, s) = 64(1, s), yield

e4 = e2(s) cos 2miry + e4(s),

, N (WITT)4e2(s) = — &o + g &o + 20o cn2 (coiS, k) + — 9q cn4 (o>is, fc)J, (27;

3 f1e4(s) = — (mirdo)4, cn4 (wls, k) + mtrd0 cn (wjS, k) I
u4 J 0

03 cos miry dy,

where e4(s) is obtained after the use of the second Eq. (19). The second Eq. (16) thus
becomes

83... + Os.yyyy ~ ^(mird0)2 cn2 (c^s, k)d3,yy + (raw)4#2 cn2 («is, k).

cos miry / 93 cos miry dy = i?i(s) cos miry + R2(s) cos 3miry,
Jo

Ri(s) = (wwr)' 13 fl2 _ _13
16 0 128 e^jdo cn (wjS, fc) + | 92 cn3 (o^s, k)

(28)
+ cn5 ("Is' k)

R2(s) — (wwr) [5 5 3
—— dl cn (Wls, k) — ^ do cn (wjS, k) — ^ el cn3 (cojS, k)

T0 cn5 k)128
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The solution of partial differential equation (28) is of the following form:

= C + A"' + 032\ • (29)

where d'f' is the solution of the reduced equation, d'^ and 0-2) are particular solutions
of the differential equations obtained by taking R2(s) = 0 and 11 ̂ (s) = 0 respectively.
An examination of the second Eq. (18) reveals that

d-i " = <Si(c) cos rrnry, = S2(a) cos ny, a = co,s, r ^ m, (30)

where Si and S2 satisfy the following differential equations which are obtained by
substituting Eqs. (30) into the reduced equation

St.„ = [2&2sn2 (ff, k) - 1J& , (31)

S2,,. — [67c2 sn2 {a, k) - (1 + Ak2)]S2 . (32)

Differential equations (31) and (32) are the Jacobian forms of the generalized Lam6
equation. The solutions of these equations are:

Sa = + CAl2', (a = 1, 2) (33)

A,(I> = cn (<r, k),

AI2' = cn (a-, k)[( 1 — k2)c + dn (<r, k) sc (<r, k) — E(a, fc)J;
(34)

Aa, = ^ II(a + *r) ^
r = 1 "W

a^2> = II exp l*Z(<rr)},

where <r, and a2 are chosen to satisfy the following two independent equations:

sn <r1 cn <y! dn a, + sn cr2 cn tr2 dn <r2 = 0,

(cn ct1 ds ci + cn <r2 ds a2)2 — ns2 o-j — ns2 <r2 = — (1 + 4fc2).

(35)

(36)

Here 9(w), H(u), and Z(u) are Jacobian Theta, Eta and Zeta functions respectively [4];
E(u) is the fundamental elliptic integral of the second kind; sn u, cn u, and dn u are
Jacobian elliptic functions and sc u = sn u/cn u, ds u = dn w/sn u, ns u = 1/sn u as
originated by Glaisher. These functions are tabulated in [6],

The general solution of an equation similar to (32) was first given by Hermite [5].
Only the first of Eqs. (34) can be extracted from this solution by use of properties of
these functions. The second solution Aj2' is obtained upon reducing the order of the
differential Eq. (31) by letting aJ2) = A (a) cn (o-, k) and upon integrating the resulting
equation for A(c). It can be seen that while A,'1' is a doubly-periodic function A[21 is
not periodic.

Particular solutions 0-,1' and d'2' of Eqs. (28) are of the following forms:

0sU = <SU)(<r) cos miry, d{32) = S(2)(c) cos 3rrnry. (37)
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Substitution of Eqs. (37) into the first of Eqs. (28) with R2{s) = 0 and R, (s) = 0
respectively, results in

S(,ll - [2k2 sn2 (tr, k) - 1 ]Sm = R1(c), (38)

SHI - [6fc2sn2 (a, k) - (1 + 4&2)]S(2> = R2(a). (39)

Particular solutions of these equations are obtained by Lagrange's method of varia-
tion of parameters. Hence*

S<a)W = -J- [' [Aa\ff)-Aa\t) - AL2)(<r)Ail\t)]Ra(t) dt, (40)

A, = -(1 - k2), (a = 1, 2) (41)

A2 = 2 ——2 cn dn a, ns , (42)

where <r, and o-2 must be solved from Eq. (36). Finally, the use of the initial conditions
given by Eq. (20), namely, 03 = 03,s = 0 for s = 0 reduce the general solution d3(y, a) to:

03(y, o) = Siv{<r) cos m-ry + iS(2)(<r) cos Smiry. (43)

e4(s) of Eq. (27) thus becomes

3 1
e4(s) = — (niTd0)4 cn4 (coxs, k) + ^ mir0o<Sa,(to1s) cn (cojS, k) (44)

This completes the solution of the equations corresponding to X4 and X5. Further approxi-
mation requires more tedious analysis. However, since larger initial deflection will cause
extremely high axial tension in the bar, the validity of Hooke's Law must be examined
before taking any further steps toward improvement.

There still remains the examination of the question of convergence. This is impossible
at this point. Although a term, <r, appears in the expression for A{2), this does not neces-
sarily mean a resonance effect, since further approximations are necessary to examine
the series in tr for the question of stability.

An estimate of region of stability of Eqs. (31) and (32) can be made for small k.
In this case sin a can be used in place of sn cr. Therefore Eqs. (31) and (32) become
Mathieu equations whose stability regions in terms of parameter k2 are well known [7],
and can easily be seen to contain those of the present equations.

4. Vibration produced by an arbitrary initial deflection. Analysis of the preceding
section is based on an initial condition corresponding to an initial sinuzoidal deflection
of the hinged bar. Differential equations must be re-solved when the initial deflection
is arbitrarily prescribed, since these equations are non-linear. The problem of non-linear
vibrations of the elastic string following an initial deflection has its analogue in the case
of hinged elastic bars. Following a similar method, as that of [3] an integral equation is
obtained below which may be solved by the method of successive approximations. This

*Eq. (40) for a = 1, can be integrated in closed form, in terms of elliptic functions. This result will
not be given here, however.
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equation represents the A''-approximation of the problem since it is obtained by integrating
Eq. (22). Let

(y, «) = "Am<Sm(s) cos miry,
m

(45)
0i(y, 0) = Z) Am cos miry, Sm(0) = 1,

m

where Am are the Fourier coefficients for the initial deflection function d,(y, 0). Sub-
stitution of Eq. (45) into Eq. (22) leads to

Sm.,s + (mw)4Sm = Sm E ^n-Sn • (46)

The required result is obtained by integrating Eq. (46):

Sm(s) = cos mVs — j f sin mV(s — XI A2nS2n{t) dt. (47)
4 Jo n

There remains the problem of solving e4, «6, • ■ • ; 03 , 05, etc., for an arbitrary initial
deflection. However, corresponding differential equations given by (15) and (16) are
linear. Therefore superposition is valid after 9x(y, s) is solved from non-linear integral
Eq. (47).

•0 2 4 6 8 10 °

Fig. 2. Period versus initial deflection.

On Fig. 2 the ratio of non-linear period over linear period, TJ T» , is plotted against
initial deflection angle 60 . It is seen that classical theory is correct only for vanishing
0O • Fig. (3) represents the axial stress multiplied by a scale (1 /m2-r2E) against 7\ / Tu .
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Fig. 3. Axial stress versus period.

It is seen that axial stress increases very rapidly with the decrease of Ti/T0 or with the
increase of frequency ratios.
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