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ON MATRIX BOUNDARY VALUE PROBLEMS*

By JULIAN ADEM anpo MARCOS MOSHINSKY (Institutos de Geofisica y Fisica,
Universidad de México)

Introduction. In a recent publication' a matrix type of boundary value problem was
introduced in order to simplify the description of nuclear reactions. It appeared that
this type of boundary value problem could find applications in other branches of mathe-
matical physics, and the purpose of the present note is to illustrate them.

When we deal with vibrations of continuous media, with problems of heat flow etc.,
we usually describe the state of the system in terms of a single function which depends
on position as well as on the time. As an example, we may mention the lateral displace-
ment of a vibrating string, or the temperature function in case of problems of heat flow.

In many problems of vibration and heat conduction, of which examples will be given
below, the description of the state by a single function leads to boundary value problems
of great difficulty. It is possible though, in some cases, to divide the continuous medium
into several regions, and with each region we can associate a function describing its
state. These functions can be grouped together in the form of a column matrix or vector,
which will then represent the state of the whole system. The mathematical problem we
encounter then, is a matrix boundary value problem, which is, in general, much simpler
than the one we would have to deal with in the usual formulation.

In the present note, we shall discuss two examples of matrix boundary value prob-
lems. The first one describing the flow of heat in a cross, illustrates the case where the
interactions between the different regions appear through boundary conditions. The
second one, dealing with the vibration of systems of plates with intermediate elastic
media, illustrates the case where the interactions take place through the equations of
motion. We shall obtain the eigenvalues and eigenmatrix functions corresponding to
this type of problems, and with the help of them, give a formal solution for any initial
conditions. '

For the discussion of the self-adjoint properties of this type of boundary value
problem, and the rigorous derivation of the series expansion theorems, we refer to other
publications.?"®* ,

1. Flow of heat in a cross. We shall consider the problem of flow of heat in a cross
(Fig. 1a) whose four arms are of the same length I, and of square cross section of area a’,
where a < I. The material of the cross will have a density p, conductivity « and specific
heat ¢. The lateral sides of the cross will be coated in such a way that the outer con-
ductivity® can be taken as zero, i.e. there is no radiation.

If we tried to deal with this problem as a three-dimensional heat conduction problem
in a region bounded by the surface of the cross, we would have a difficult boundary
value problem which would not admit a simple solution. Taking into account though,
that the smallness of the cross section permits us to assume that the temperature at all
points in it is the same, we can describe the state of temperature in the cross in the
following fashion: with each bar of the cross we associate its temperature function
6.(x, t), where ¢ = 1, 2, 3, 4 indicates the bar in question, z represents the position of
the point on the bar with 0 < z < [ as indicated in Fig. la., and ¢ is the time. The
temperature state of the whole cross is then described by the column matrix:

*Received April 10, 1951.
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[6,(x, t)]
0>(, t)

0z, ) = . (D)
Os(x, ©)

L 8,(x, t)-

The equation for the temperature in each bar will be the well known equation for
heat flow in rods,® and so the matrix representing the temperature in the cross satisfies
the equation:

pc(30/0t) = k(9°8/9x”). (2)
The boundary conditions on the temperature at the free end points £ = 0, can have
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any of the usual forms;’ for simplicity we will assume that the end points will be main-
tained at the constant temperature zero. We then have:

6(0,t) = 0. 3)

We now consider the boundary conditions at the end points x = 1. The intersection
of the arms of the cross at * = [ gives rise to a cube of linear dimensions a illustrated
in Fig. 1b. The smallness of the linear dimensions of the cube, allows us to assume that
the temperature at all points of the cube can be taken as the same. The temperature
at the end points of all the four arms will then be equal, and we have:

6:(L, ) = 6:,(1, ) = 6;(L, ) = 6.(1, 1), )
which gives rise to three linearly independent boundary conditions.

Finally, to obtain our last boundary condition we need to consider the total ﬂo\\ of
heat into the cube. The flow of heat per unit time through the end sections of each bar
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into the cube, is given by —«a®(86;/9z),-, . The net inflow of heat into the cube must
be equal to the increment per unit time of the quantity of heat in the cube which is
pca’(86,/dt),-, . This quantity depends on a® and due to the smallness of the linear
dimensions of the cube, it can be taken as of higher order than the net inflow of heat.
The net flow of heat into the cube may then be assumed as ~ 0 and, as there is no
radiation through the lateral sides, this leads to the boundary condition:

2 (06:/92).; = ®)

The problem of flow of heat in a cross has now a complete mathematical description
in terms of the equation (2) and the boundary conditions (3), (4), (5). Due to the sym-
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metry of this particular problem, a simple linear transformation of the matrix 6(z, ¢)
can be found, which reduces (2)-(5) to four independent scalar problems. We shall
discuss it though, as a matrix problem to illustrate the general procedure.

If we now introduce, as usual, a solution of the form 8(z, t{) = 0(x) exp (—\t) where
\ is an arbitrary real positive constant, we are led to a matrix boundary value problem
in which 6(z) satisfies the ordinary linear equation:

(d°0/da®) + (Apc/k)0 = 0 (6)

as well as the boundary conditions (3), (4), (5).
To determine the eigenvalues and eigenmatrix functions of this problem, we first
notice that from (6) and (3), 6(x) must have the form:

0(z) = A sin (\pc/x)"*x, )

where A is a constant column matrix of components 4;,¢ = 1, 2, 3, 4.
We now apply the boundary conditions (4), (5) to the solution (7) and we obtain
the homogeneous system of linear equations:

A, sin (\pc/k)"?l — A;sin (A\pc/k)'?l =0; =234
®

4
> (Ape/K)2A; cos (Ape/K)*1 = 0.
i=1



1952} JULIAN ADEM AND MARCOS MOSHINSKY 427

The determinant of this system is: 4(Apc/x)'’* sin® (Aoc/k)/*l cos (Apc/x)'?l, and
the characteristic values for which this determinant vanishes are:
n’rk

A= Apcl®

n=20,1,2 ---. )

We see from the determinant that when = is odd, the eigenvalue is non-degenerate,
while when n is even, it is triply degenerate. The corresponding eigenmatrix functions
are:

for odd n:
1
1
0,.(r) = (2)~"* sin (nwx/21), (10a)
1
L1
for even n:
0 - o
0 1
0 (z) = 17 sin (nwz/21); 0¥ (2) = 172 sin (nwz/2)  (10b)
-1 0
L ol L—1]
0
_1 ,
0. (x) = (20)7V* sin (nwz/21).
1
L—1

We define the scalar product of two matrix functions $(x), ¥(z) as:

1l l 4

% V= ¥ = [ [2 e -p.»(x)] dx (an
where §’(z) is the transposed form of the matrix $(x). It is then seen, that for even n, the
eigenmatrix functions 6, (z), « = 1, 2, 3 were chosen so as to be mutually orthogonal,
i.e. (0", 6:”) = 0 etc. All the eigenmatrix functions are normalized (6, , 0,) = 1. Finally,
the eigenmatrix functions corresponding to different eigenvalues, are orthogonal, as can
be seen directly from (10), and also from general considerations of self adjointness given

in another publication.”
We assume now that the initial temperature distribution is given by a matrix function
<(x) of class C'”, with sectionally continuous second derivative, which satisfies the
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boundary conditions (3, 4, 5). The variation of temperature with time will then be
represented ®'*’ by a matrix function

8(, 1) = 2 G2ns102,1(2) exp [—(2n + 1)’n’kt/4pcl’]
n=0

(12)
+ il 23; ase’ 052 (x) exp [—n’n’kt/pcl’),
where: e
Uoni1 = (%, O2ms1), a5y’ = (x, 05).

We see that in the present formulation, the problem of flow of heat in a cross admits
a complete solution.

2. Vibration of two circular plates with an intermediate elastic medium. Let us con-
sider a system of two circular plates of radius R, clamped at the edges, and with an in-
termediate elastic medium. We shall designate by p, the density, D, the flexural rigidity
and a, , the thickness of the first plate, and p, , D, , a, will have the same meaning for
the second plate. Finally, we denote by . the load per unit area of the plates necessary
to produce a unit compression in the elastic medium.

The state of the vibrating system can then be described in terms of the normal
displacements of the two plates u,(r, ¢, t) and u.(r, ¢, t), in which r, ¢ stand for polar
coordinates in the plane. As the force per unit area that the plates exert on each other,
is proportional to the compression u, — wu, of the elastic medium, we have that the
equations of motion®” for the vibrating system are:

p,al(azul/atz) + D1V4u1 + k(ul - u2) = 0,
(13)
pgag(azug/atz) + D2V4u2 + k(U2 - ul) = O.

We introduce, as usual, a solution of this system of differential equations, of the form:

, COS gy
u@, ¢, t) = u() exp (iwi) (14)
sin mep :
in which, for simplicity in notation, we abstain from associating explicitly an index m
with the two components column matrix u(r). We are then led to the matrix boundary
value problem:

D, O 1d d m?\? ul(") wzalpl —k k ul(r)
; d_f‘r E‘ - ;‘2— - =0 (15&)

0 D, us(r) k w’azp; — kLus(r)
ulR) =0 (du/dr),.r = (15b)

This type of matrix boundary value problem differs from the previous one in so far
as the interactions between the components take place through the equations of motion,
and not through the boundary conditions.

To find the characteristic frequencies and eigenmatrix functions of (15), we first
consider the scalar boundary value problem:
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(€ = M) =0;  v(R) =0, (dv/dr),.r = 0, (16)

where £ is the operator [(1/7)(d/dr)r(d/dr) — (m’/r’)], and \ is a parameter. The
solution of (16) is well known, as it is the boundary value problem of a single circular
plate.” The function v(r) is given by AJ,(\*r) + BI,(\'’r) and the eigenvalues
M., n =1, 2 3 are given by the transcendental equation:

[Jm(x‘”r) 4oy — Lo & J,,,()\”zr)] ~0 (172)
d?' dr r=R

The roots 8, = \.’R/w of this equation have been evaluated’ for several values of m.

The corresponding eigenfunctions are:

0ar) = A,,[J,,,(’i%f) - %ﬁi—gﬁ 1m<’%ﬁ)J, (17b)

where A4, is an arbitrary constant.

We propose now a solution for (15) of the form u,(r) = cv,(r) where ¢ is a constant
column matrix of components ¢, , ¢; . The boundary conditions (15b) are immediately
satisfied because of (16), (17).

As £%, = A\, , we see that the equation of motion (15a) is transformed into the
algebraic linear equations

Dl)\: +k —k @101 0 C;
— o =0 (18)
—k D2>\: + k 0 Q2p2 ()

To have non-trivial solutions of this system of equations, the determinant of the

matrix must vanish, and this determines the two characteristic frequencies w."’, w'®

corresponding to each eigenvalue A, , which take the form

w(l)
" 1 (k + DN | k4 szi) [ 2py2 k? ]”2}”’
=4z + A2 , 19
w(z)} {2 a;py + Az p2 « ( ) + a;p1Q2p2 ( )

n

where

a()\:) = (2a1P1)_1(k + Dl)\i) - (2a2P2)_1(k + Dzﬁ)

The corresponding eigenmatrices take from (18) the form

[ k/D1 ] |:(02P2/D2)7()\§):l
e = , . @ = , (20)
—(ap:/ Dl)'Y()\:) k/D,

YA) = —a(A) + [@®(\)) + (a1p:1020:) K12

The matrix boundary value problem (15) has now been solved, with the characteristic

frequencies being ", w:” and the corresponding eigenmatrix functions having the

form: u{® (1) = c¢Pv,(r), P (1) = c®Pv, (7).
It is easily established, from the general equations (13) and the boundary conditions

(15b), that two eigenmatrix functions u*, u corresponding to different characteristic

where
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frequencies, are orthogonal in the sense that: [ u*' Wu rdr = 0 where u*’ is the transposed
of u* and w is the matrix

a1 p1 0

0 Q2 p2

We can normalize the eigenmatrix function u in the sense that [ u'Wu rdr = 1 by
choosing the constant in (17b) appropriately. We would then have

.

@, u®”) = f w,” Wu®r dr = Sagdu , (1)
0

where @, 8 = 1,2,andn,l = 1,23, --- .

We have obtained an orthonormalized set of eigenmatrix functions corresponding to
this vibration problem. With their help, we could represent the state of vibration for
the two plates corresponding to any initial conditions. For example, let us assume that
we had at ¢t = 0 a given displacement for our two plates, and that the initial velocity
was zero. The initial displacement of the two plates could be represented as sum of
terms of the form

COS My
<(r) for m=0,1,2, --- .
sin mep

For each term of this type, the solution of the vibration problem would be

cos mep
u(r, t)
sin me
where u(r, f) has the form:
ufr, ) = 2 {(5, ufHu’ () cos wt + (z, u?ul® () cos ¥t} (22)

n=1

and
R
(z, ui®) = f < (NYWui® (r)r dr.
1]

The generalization of the present developments to systems of more than two plates,
as well as to other types of boundary conditions, and other forms for the plates, is
straightforward.

3. Conclusion. A general type of matrix boundary value problem, which includes
both of the preceding cases, would be the one in which there are interactions between
the components of the column matrix, both, in the differential equations and in the
boundary conditions. If we introduce additional components into the column matrix, so
as to reduce the system of differential equations to one of the first order, the matrix
boundary value problems introduced in the present note, reduce to a form which has
been extensively discussed by Birkhoff and Langer.® While, in their formulation, the
self-adjoint nature of the present problems is obscured, their proofs concerning the exist-
ence and properties of eigenvalues and eigenmatrix functions, as well as of expansion
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theorems, apply to the problems discussed above. We are justified then in using formal
expansion theorems, such as (12), (22) in the solution of problems of the above type.

The authors are thankful to Ing. R. Monges Lépez, Director of the Instituto de
Geofisica, for the encouragement he has given to the present research. This work was
supported, in part, by the Instituto Nacional de la Investigacién Cientifica.
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A NOTE ON A VECTOR FORMULA*
By H. LOTTRUP KNUDSEN (The Royal Technical University of Denmark, Copenhagen)

Of some vector formulas compiled in a recent paper' the one discussed in the present
note seems to be of general interest in field theory.

1. Derivation of the vector formula. Let B(r) denote a vector function of the position
vector 1, satisfying sufficient continuity and differentiability conditions, and let A denote
a closed surface and V the region of space bounded by this surface. Using conventional
vector notation we may then state Gauss’ theorem in the following way

L@B=L@va. )

Letting ¢(r) denote a scalar function and ®(r) a dyade function, both possessing sufficient
continuity and differentiability properties, we may derive the following equations from
Gauss’ theorem

da g = [ d Vo, @

2

a@=ﬁwvw. 3)

A

Substituting in equations (2) and (3)

(4 r'By (4)

® = 1B, S G5)]
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