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ON THE NUMERICAL SOLUTION OF THE DIRICHLET PROBLEM FOR
LAPLACE'S DIFFERENCE EQUATION*

By
J. B. DIAZ and R. C. ROBERTS

Institute for Fluid Dynamics and Applied Mathematics, University of Maryland

1. Introduction. The present note is concerned with the proof of the convergence of
three iterative methods for the numerical solution of the difference equation boundary
value problem which is analogous to the classical Dirichlet problem for Laplace's
differential equation. These three iterative methods for the Dirichlet difference equation
problem bear a marked resemblance to, and are patterned after, methods of solution
for the Dirichlet differential equation problem, and may be briefly characterized as
follows: (a) method I is the precise analogue of Poincare's [l]1 "methode de balayage",
(b) method II is the precise analogue of the extension of Poincare' method due to
Kellogg [2], (c) method III is based on a certain connection between Laplace's differential
equation and the heat equation (intuitively put, "the steady state temperature is a
harmonic function")'

Several convergence proofs for the Dirichlet difference boundary value problem have
been based on Liebmann's [3] original proof (see P. Frank and R. von Mises [4], and
I. G. Petrowsky [5]) which involves a definite ordering of the points of the domain. It
follows from the convergence proof given below for method III that this preliminary
ordering of the points of the domain is unnecessary. R. Courant [6], has given a con-
vergence proof for method I for the Dirichlet difference boundary value problem em-
ploying a variational method which is the direct analogue of the classical Dirichlet's
principle for Dirichlet's differential boundary value problem. In spite of the inherent
interest and symmetry of the proofs in methods I and II described below, it should
be remarked that the variational method of proof (minimization of a quadratic sum)
proposed by Courant possesses a certain advantage in that it may be applied to other
"elliptic" difference equation boundary value problems, since it does not require for
its application the maximum-minimum property of the solutions of the difference equa-
tion, i.e. that "the maximum and the minimum of a solution of the difference equation
occurs on the boundary". In the Laplace case, both the differential and the difference
equations possess the maximum-minimum property. However, it is easy to give examples
of elliptic differential equations (for which the maximum-minimum principle holds)
e. g- Uxx + Uxy + Uyv = 0, which have the property that the seemingly most naturally
associated difference equation does not possess the maximum-minimum property. A
convergence proof for method III, different from the one given here, has been given
by Feller [7].

Although only the two dimensional case will be considered here explicitly, it is clear
that the same arguments are valid in a finite number of dimensions.

2. Convergence proofs. The boundary value problem will be formulated first. Con-
sider a finite set S of points (m, n) in the xy-plane, where m and n are integers (i.e., S
is "a net of equally space points in the plane, where for convenience the spacing has
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been taken as unity"). The points of the set <S are divided into two mutually exclusive
subsets of points, the subset D consisting of interior points of S and the subset C of
boundary points of S. A point (rn, n) of S is said to be an interior point of S provided
that its "four neighbors" (to ± 1, n), (to, n ± 1) also belong to S. A point (to, n) of S
is said to be a boundary point of S provided that at least one of its four neighbors
(m ± 1, n), (to, n ± 1) does not belong to S. It will be supposed in what follows that
every point of the boundary C has at least one neighbor in J) (this is clearly no restriction,
as far as the difference equation problem is concerned, since only "isolated" points of
the set S and "unessential" boundary points of S are excluded).

The Dirichlet difference boundary value problem for the finite set S = D + C
consists in finding a real valued function u, defined on D + C, assuming prescribed
values on the boundary C and which satisfies Laplace's difference equation

4w(to, n) = u(m + 1, n) + u(m — 1, n) + u(m, n + 1) + u(m, n — 1), (1)

for each point (m, n) in the interior D.
This boundary value problem, which is analogous to the classical Dirichlet problem,

is well known to possess one and only one solution. This is readily seen as follows. The
difference equation (1) amounts to a system of d linear equations in the d unknown
values of u at the points of D, supposed to be d in number. This system of linear equations
is homogeneous if and only if the prescribed values of u on C are all zero (recall that
it was assumed that every point of C has at least one neighbor in D). But it is known
from algebra that a system of d linear equations in d unknowns will have a unique
solution if and only if the corresponding homogeneous system has only the trivial,
identically zero solution. That the homogeneous system has only the zero solution
follows immediately once it is shown that the maximum and minimum values of a
function u, defined on J) + C, and satisfying (1) in D, must occur on the boundary C.
Suppose, on the contrary, that the maximum value M of u occurs at a point (to, n) of D,
but not on the boundary C. Then from (1) it follows that the value of u at the four points
(to =b 1, n), (to, n±l) must also be M and hence these four points must all be in the
interior, D. By induction, it follows that the infinite set of points (to + j, n), j = 0, 1, 2,
• • • all belong to D, which contradicts the initial assumption that I) is a finite set of
points. Thus the maximum value M must occur at a point of C. Since a minimum of
the function u is a maximum of the function —u, and —u also satisfies (1), it follows
that the minimum of u on D + C also occurs on C.

Method I.
Consider the convergence of method I mentioned in the introduction. Denote by

f the given real valued function, defined on C, which is the prescribed boundary value
of u on C, and let the "initial function" G be a superharmonic function defined on I) + C
and which coincides with the given function / on the boundary C. That is

4(t(to, n) ^ G(m + 1, n) + G{m — 1, n) + G(m, n + 1) + G(m, n — 1), (2)

for each (to, n) in D, and

G(m, n) = /(to, n),

for each (to, n) in C. The restriction that the initial function G be superharmonic is not
essential, and will be removed later.
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Let the points of D be arranged in a sequence I\ , P2 , P3 , • • • in such a way that
each point of D occurs infinitely many times in the sequence. For convenience, the
sequence may be chosen by moving from point to point of D in some definite geometrical
pattern, but this is not necessary.

A sequence of functions is now defined on D + C by the following procedure. First,
let w0 = G, and define the sequence of functions w0, w, , w2, ■ • • successively as follows:

First step: w0 = G, on D -f C;

Second step: is harmonic at ,
Wi = w0 on D + C — Pi ;

Third step: w2 is harmonic at P2 ,
w2 = w, on D + C — P2 ;

(p + 1) st. step: wp is harmonic at Pp ,
wp = on D + C — PP ;

etc. In other words, one moves from point to point in D changing the value of the func-
tions at each point so that equation (1) holds.

It is easily seen that each function w„ is superharmonic in D + C. Consider Wi ,
and let Pt = (to, n). is certainly superharmonic at all points of I) + C, save perhaps
at the five points (m, n), (to ± 1, n), (rri, n ± 1). But at (m, n) the equality sign holds
in equation (2), with G replaced by Wj , by the definition of w:(to, n), while at the four
points (to =t 1, n), (to, n ± 1), equation (2), with G replaced by wx , holds a fortiori,
since the right hand sum does not increase if G is replaced by w{ . By induction, wv
is superharmonic for each p. Further, the sequence of functions w0 , Wi , w2 , • • • is
monotonically non-increasing on D + C, by the way in which the sequence was con-
structed. Finally, each function w„ is bounded below by the minimum value of G on
D + C.

This last statement follows immediately from the fact that the minimum value of a
function superharmonic in D + C must occur at a point of C (this may be seen by an
argument analogous to that used above in proving the maximum-minimum property
of solutions of (1)). Since

wv(m, n) — G(m, n) = /(to, n),

for (to, n) in C and any p, it follows that for any p

wp(m, n) ^ minc G = minc /,

for any (to, n) in D; and this, together with

Wiim, n) Si w2(m, n) ^ ^ wv(m, n) ^

assures the convergence of the sequence wv at each point of D. It only remains to show
that the limit function

lim wp(m, n),

(to, n) in D + C, is the solution of the boundary value problem.
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There is no question about the fact that the limit function coincides with / on C,
since each wp does, it is only necessary to show that the limit function satisfies the partial
difference equation (1) in D. Consider a point (to, n) of D. Since (m, n) occurs infinitely
many times in the sequence Pi , P2 , P3 , • • • it follows that there is an infinite sequence
of integers, k„ , such that

(to, n) = Pk,,

for p = 1, 2, 3, • • • . Consequently, there is a subsequence of functions wkt , wt, , • • • ,
wkp , • ■ ■ of the sequence wt , w2 , • ■ ■ , wv , • • • such that each function wkv of the subse-
quence is harmonic at (to, n), that is

4wkp(m, n) = wkp(m + 1, n) + wkp(m — 1, n) + wkp(m, n + 1) + wkp{m, n — 1).

Since

lim wv(x, y) = lim wkp(x, y),
p—» 00 p—> CO

for any (x, y) in D, it follows that

4 lim wp(m, n) = lim wp(m + 1, n)
p—+00 p—»00

+ lim w„(m — 1, ri) + lim wv{m, n + 1) + lim wv(m, n — 1),
p—»C0 p—» 00 p—>00

i.e., the limit function is a solution of the boundary value problem (notice that the
existence of a solution has been proved independently of the earlier considerations in-
volving Cramer's rule). The solution has already been shown to be unique by the
maximum-minimum principle.

The restriction that the initial function G be superharmonic will now be removed
by showing that any function defined on D + C may always be represented as the differ-
ence of two superharmonic functions on D + C. Let g be any function defined on D + C,
and let M be one fourth of the maximum of the absolute value of the Laplacian of g on D,
i.e. M = \ max0 | g(m + 1 ,n) + g{m — 1 ,ri) + g(m, n + 1) + g(m, n — 1) — 4g{m, n) |.

Then

g(m, n) = gx(m, n) + g2{m, n),

where
g^m, n) = g{m, n) - M(m2 + n2),

g2(m, n) = — M(m2 + n2).

Clearly, gx and g2 are both superharmonic on I) + C. Thus, if g is any function taking
the prescribed values on C, the sequences of functions, constructed as explained above,
corresponding to the initial superharmonic functions g, and g2 converge to harmonic
functions, and the difference of the two limit functions is the desired solution.

The method just described is the precise analogue of Poincare's [1] "method of
sweeping out" for the classical Dirichlet problem. It also coincides with the relaxation
method (Southwell [8]) provided that the relaxation is done point by point and that at
each point the residual is actually reduced to zero.
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Method II.
This method differs from the preceding one only in the removal of the restriction

that the process of method I be carried out pointwise at each step. Consider a sequence
Bx , B2 , B3 , ■ ■ ■ of subregions ("blocks") of D, subject to the following conditions:
(a) each point of D is an interior point of an infinite number of the blocks of the sequence,
(b) the Dirichlet problem is explicitly solvable for each block Bp in terms of arbitrary
boundary values on the boundary of Bv .

The convergence proof is the same as in method I. One need only substitute the
sequence 5, , B2, B3, • • • of blocks for the sequence , P2, Pa, • • • of points.

This method is the exact analogue of the procedure suggested for the classical
Dirichlet problem by Kellogg [2], It is not to be confused with "block relaxation", with
which it coincides only in the case where the residuals are actually made zero at each
interior point of each block.

Method III.
Method III is essentially a method of successive approximations. Starting with an

initial function w0 = g which satisfies the prescribed boundary condition, one defines
the following sequence of functions wv :

w0 = g, on D + C;

4wx{m, n) - w0(m + 1, n) + w0(m — 1, n) + w0(m, n + 1)

+ w0(m, n — 1), for (m, n) in D,

wy(m, n) = g(m, n), for (m, n) in C;

4wp(m, n) = w„_i(m + 1, n) + wP_i(m — 1, n) + wp-x(m, n + 1)

+ n — 1), for (m, n) in D,

wT(m, n) = g(m, n), for (m, n) in C;

Again one may suppose, without loss of generality, that the initial function g is super-
harmonic to start out with. Hence all the functions wv are superharmonic and from the
minimum principle for superharmonic functions it follows that

w0 ^ Wi ^ w2 ^ ^ wp ^ • • • S: minc. g = minc /.

Thus the sequence converges, and since

lim wv — lim w,., ,
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it follows that the limit function of the sequence is the desired solution of the Dirichlet
problem.

The last method is related to the difference equation formulation of the heat flow
problem, Emmons [9], in which the boundary C is held at all times at a fixed temperature,
g represents the initial temperature, and the functions wv represent the temperature of
D + C at regular intervals of time after t = 0. The limit function represents the steady
state temperature. A proof of the convergence of method III, based upon random walk
considerations, has been given by Feller [7].
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