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WALL EFFECTS IN CAVITY FLOW—II*

By G. BIRKHOFF, M. PLESSET anp N. SIMMONS (Harvard University; Naval Ordnance Test Station,
Pasadena; Ministry of Supply)

1. Introduction. In Part I of the present study,** the problems of flow about a
cavitating body symmetrically placed in a channel or in a free jet have been solved in
the case where the cavity extends to infinity downstream. The infinitely long cavity
oceurs, in each configuration, at one particular cavitation number which is a function
of blockage ratio in the first case and is zero in the second. At greater values of the
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FIG. | -CASE A.

cavitation number, the cavity is of finite extent and a different analysis is necessary.
The solutions of the corresponding problems with finite cavities are given in the present
Part.

The configurations examined are again two-dimensional, this permitting the employ-
ment of conformal transformation technique. The body is taken in the form of a finite

*Received October 18, 1950.
**Q. Appl. Math. 8, 151-168 (1950).
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lamina perpendicular to the stream, so that the physical features of the flow may not
be obscured by mathematical difficulties. Explicitly, the cases treated are

A. The cavitating lamina in an infinite stream;

B. The same in a channel of finite width;

C. The same in a free jet of finite width.

2. Case A. The lamina in an infinite stream. This case, where the liquid has no outer
boundaries, is taken first to provide a standard for the other two. Solutions of this case
have been given previously by Riabouchinsky [1] and by Fisher in an unpublished
British Admiralty report, but the present treatment is much simpler than either.

Take the density of the liquid as unity, the velocity at infinity as unity, and the
width of the strip forming the body as 2 units, so as to avoid unnecessary symbols.
This strip is disposed between the points (—1 =& ¢) in the z-plane (Fig. 1). The free
boundaries, there shown in broken line, start from the edges of the strip and re-form
downstream on a similar, conventional, solid strip, extending between the points (1 & 7).
This device, which is due to Riabouchinsky, avoids the closure jets and turbulence that
would otherwise have to be taken into account. In this way, the mathematical ad-
vantages of a symmetrical problem are obtained merely by modification of the down-
stream conditions, to which the flow around the cavitating body is known to be in-
sensitive. That this is so, has been clearly demonstrated by Gilbarg, Rock and Za-
rantonello,t who, in an as yet unpublished analysis of the similar problem with down-
stream closure by a re-entrant jet, find for low and moderate cavitation numbers, cavity
boundaries and drag coefficients virtually indistinguishable from those that result below.

The flow being symmetrical about the z axis, consideration is restricted to the upper
half z-plane. The corresponding regions in the W and {-planes are shown in Fig. 1,
together with the auxiliary plane of . Symbolism is as in Part I.

Proceeding by Kirchhoff’s method for discontinuous flows, the transformation rela-
tions are found:

o 2l 1 + ¢tanh B tan u:l”"’
f=-0+0Q |:1 — {tanh Btanu | ’ . @
dz 1—itamhL-H;anu]”2
du ~ 8.(8) cos u[l + {tanh Btanu| ’ )
where )
B =zlog(1+Q) 3)

and S,(8) can be evaluated in terms of standard Jacobian elliptic functions of modulus
k = sech 8 as

— k2
Sl(ﬁ) - kl2 + El — k2K10 (4)

The integration of (2) between appropriate limits then yields the cavity half-length and
half-width a:

tPartial results were detailed previously by D. Gilbarg and H. H. Rock. Nav. Ord. Lab. Memo. 8718.
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The intrinsic equation of the cavity boundary, referred to its point of departure C as
origin is found to be

tan 6
§= S‘(B)[l " (tanh’® B + tan® 0)”2]' ©)

In Cartesian parametric form, this is equivalent to

z = SI(B)I:coshz ,3E(k, %w - o) — sinh® B-F(k, —;‘w - o)

sin 6
" (tanh® 8 + tan® 0)"’]’ @)

_ . 12 sec 6 _

y = S,(8) sinh [(tanh2 8+ tan’ 0)1/2 1]:

where E, F are the standard elliptic integrals of the second and first kinds respectively.
The drag coefficient of the lamina, based on unit velocity, is found after some re-

duction to be

= 1+ @8.), (8)
where
84(13) = k/g(f E_I ‘I_c_Izz)I{/- (9)

1/2

Referred to the velocity on the cavity boundary, (1 + Q)
C, = 8.(6). (10)

The functions S, , S;, S;, S, are all easily calculable and there is no difficulty in
applying the foregoing solution in any numerically given case. The sub-class of cases
in which @ is small is of especial interest: the functions then degenerate, giving the
following simple results:

, the drag coefficient is

1=Wf4<é+é)+0(l),

(11)
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The cavity contour becomes

T = 2 1 l:cosec 6 cot § — gd™* (%w - 0)] + 0(Q"),

(12)
y=r: _4{_ 1 (cosec 8 — 1) + 0(Q").

In the limit, as Q@ — 0, (11) and (12) become the classical results for the lamina in an
infinite stream.
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3. Case B. The lamina in a channel of finite width. Take the same arrangement as in
Case A, but with the liquid confined between two parallel rigid walls, distant 2A apart,
with respect to which the body is symmetrically placed (Fig. 2). Again restricting con-
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sideration to the upper half z-plane, the region in the W-plane is now an infinite strip:
this, together with the ¢ and u-planes, is shown in Fig. 2.

Proceeding as before, but with greater complexity due to the additional singularities,
one finds the following transformation equations:

veenu + gk’ snwu

t=—-101+4+9 dnu ) (13)
dz 2hksn A cn’u — dk’snucnu
du 71+ Q7 1 —kKsn®Asn®u’ (14)
where
dn A = 2—%—‘3 K. (15)

The constant £ is not known ab initio, but must be determined at the end to conform
with the given h.

The integration of (14), between appropriate limits, then yields after reduction the
following expressions for the geometrical characteristics:

1+ Q" _ dna o, R k’ o .
oh = Tena [K'E(A) + (B — KAl + T en A €O (ed A) — kK’ sn A, (16)

- h e _ 2K
a—1 2h s [am A — tan™' (K’ sc A)]. (18)

11+ Q" ken A

The cavity shape is obtained in Cartesian parametric form as

_h2+0Q [ : _ 1 em_A+_v>]
= 1+ 0 {k*sn A ed A Z(A)}v+210g91(A—v) ,
(19)
y = h_@Q [tan™ (k' sc Andv) — tan™' (k' sc A)] '
14+ Q ’
where the parameter v runs from 0 to 2K.
Again, after considerable reduction, one finds for the drag coefficients
Cp = 2[1 +Q — };_—Qtan'l (k' sc A):I,
(20)

I PR SR ]
C, = 2[1 1r1+Qtan (k' sc A) |.
With these relations, the solution is formally complete in its barest essentials: if the
complete flow pattern is desired, the z, u relation can be found without difficulty by
integration of (14) and the velocity vector at any point is then given by (13).
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The numerical solution for any given case involves some complication. Given @ and
h, the value of £ must be found from (16); successive approximation is the indicated
method. At the same time am A is found from (15); the remaining results can then be
evaluated.
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It is soon found, on trial, that solutions do not exist for all combinations of Q and h.
For each value of @, there is a limiting value of the blockage ratio 1/h that cannot be
exceeded: this limiting value is given by

) _1430-Q0+@" 1_4@ a_Q
<h>max - 1 + Q + 14 Q tan 2(1 + Q)l/2' (21)

It is easily verified that, in the limiting condition, the length of the cavity is infinite, so
that the solution degenerates to that of Part I. Moreover, the liquid at infinity down-
stream is on the point of cavitating. Hence the limitation is an inherent physical one.
It bears some analogy with the choking phenomenon in a transonic wind-tunnel.
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The limitation, at low cavitation numbers, is extremely harsh, e.g. at @ = 0.05, the
blockage ratio cannot exceed about 1/1500 (cf. Part I, Sect. 2). Alternatively, for a
blockage ratio of 0.05, the minimum cavitation number obtainable is 0.6.

When numerical values are considered, it is found that for admissible solutions, the
drag coefficients for any given cavitation number are virtually the same as in Case A:
this is due to the very low blockage. The cavity tends to be larger than with infinite
fluid, i.e., in effect, the cavitation number is decreased by the fixed boundaries, especially
when conditions are nearly critical, but comparison of calculated cavity contours shows
that this effect becomes appreciable only at points substantially downstream.

4. Case C. The lamina in a free jet of finite width. Take the same arrangement as in
Case A, but with the body symmetrically placed in a free jet whose width at infinity is
2h units. Still restricting consideration to the upper half z-plane, the region in the W-
plane is again an infinite strip and the transformation planes of ¢ and u are as shown in
Fig. 3. In these planes, it is necessary to take into account the points J, M at which
the boundary stream-lines inflect.

Taking account of these singularities and proceeding along the same lines as in the
two previous cases, one finds the transformation relations

_ 12| Hiuw — 18) 1/2
f=-0+9 [H,(u+iﬁ)] ’ (22)
dz _ __2hk Hi(u + i) |'*
du w1+ Q) [H,(u — iﬁ)] cd u, (23)
where
= % log (1 + Q) (24)

and H, is the Jacobian theta-function constructed, like cd u, with modulus k. & in turn
must be found from the complicated integral equation

1/2 8 . . 1/2
== e (25)

In this expression, the complex radical takes its first quadrant value.
In terms of k and B, the cavity dimensions are now found to be

S * H(u + i8) + H(u — if)
1= 1r(l + Q)l/z j(; {H(u ¥ zﬂ)H(u — iﬁ)}uz sn u du, (26)
S QS — * H(u+ i) — Hu — if)
Tl o /; i Hu + ®)Hu — 8] 7 W (27)

The intrinsic equation of the cavity boundary is

_ % 1tk
ST+ Q7 ®dnv+ keno’

(28)
tan o — @+ ®) — Ho — i)

t{H@ + 18) + Hp — B)}’

where the paremeter v runs from 0 to 2K.
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The drag and lift coefficients reduce to

_ % ve [P H@GB + du) — H(iB — du) sn u
Co =520+ @ [ G T dnitis — o)A T
(29
c, = 2hk # H@GB + tw) — HGEB — tu) sn iu .

(1 + @ Jo {H(B + w)H@B — w)}* ¢

These relations comprise the solution of Case C. It is readily shown that, as £ — 0,
the solution degenerates to that of Case A. This however corresponds to very great
values of h and is not of practical interest. In the general case, (24) and (25) must be
solved simultaneously for k¥ and 8 by a method of successive approximation. The re-
maining results can then, with some trouble, be evaluated.

The case @ small, which is of the greatest practical interest, can be approximately
solved in explicit terms. For one finds that this case corresponds to k& — 1, so that the
elliptic and theta-functions approach degenerate forms. Thus K is logarithmically large
and B/K small in comparison with unity. One develops the solution in powers of Q and
retains terms of order Q. Then (24) and (25) become

B _Q
K =’
(30)
1/2
(I—-i:zg)_ = Ss(ﬂ) + 2 Sﬁ(@)’
where
— 1 14sing
S;(8) =1 — cos B + sin 8 log e ﬂ’
S,(8) = = sin 8 log scc 8 + 2[/(tan 38) — f(—tan 38)] @D
— cos B[f(sin B) — f(—sin B)],
in which
1@ = X 5 (32

a tabulated function [2]. Hence, for given values of Q and A, 8 is readily determined.
The simplified forms of (26), (27), (28), (29) are, respectively,

I N S o si 1 ]
1= AT Q7 [Qsm B — cos B log sin 8 + log tan 5 g1, (33)
2h T » .
a —.1 = m—_'_—@r;: I:'é (1 — cos @) — sin B log (1 + sin ﬁ)], (34)
s = % log cosh v
IR i

@ =0 (35)

6 = cot™' (cot 8 tanh v) — _f_—)v
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Cp = 2r(1 + Q)”z[l — cos B + gsin 8 log sec B],
(36)

C
The foregoing general solution for @ small is bound by the condition that 8 should
not be small in comparison with @. This merely implies an upper limit to the permissible
width of jet and is no handicap in practice. Within the practical range of blockage ratios
and cavitation numbers, the solution holds good.
When @ is very small, the following first approximations may be used:

=39,

S|

._.
|

= % sin 8,
@37
a = 2?;L(l — cos f),

Co

When @ — 0, those results become those for the infinite cavity discussed in Part 1.

It is not part of the present object to give detailed numerical results for application
to arbitrary configurations: these it is hoped to present elsewhere.

Acknowledgement is made to the Chief Scientist, British Ministry of Supply, for
permission to publish Part IT of this paper. The views expressed in the paper are those
of the authors.

C, = 2h(1 — cos ).
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A NEW VARIATIONAL PRINCIPLE FOR ISENERGETIC FLOWS*
By C. C. LIN** (Massachusetts Institute of Technology)

In a paper by Rubinov and the present author,' it is shown that the variational
principle for irrotational flows of a compressible gas can be generalized to isenergetic
flows. The functions to be varied are the stream function and the density distribution.
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