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of the field and directed towards this center, the scalar function <?(! r |) defined in (15)
is expressed by

0(| r |) = -K | r I"2, (25)

where K is a constant. The force F, with which this field acts on a body V, bounded by
a closed surface A, may be found by substituting (25) in (19). We hereby find

F = — ~ J [p cos (n, p) — n] | r |_1 da. (26)

For demonstrating the application of this formula we consider a sphere with center
P and radius R in a central field of force of the type discussed here. The center 0 of
the field is assumed to be situated on the surface of the sphere. The previously used
Fig. 2 may also be applied as an illustration of the present problem. For reasons of
symmetry the force will be parallel with the radius PO to the center of the field; in
computing the surface integral we therefore retain only the component in this direction
of the differential contributions. We find from (26)

^ t^cos | cos | — cos 0^2# cos |J 2irR sin 6 R dd = KRt, (27)

where the first factor cos 6/2 stands for cos (p, t), the second factor cos 6/2 for cos
(n, p), cos 6 for cos (n, t), [2R cos 6/2]_1 for | r |-1 and 2irR sin 6 Rdd for da.

From the theory for Newtonian potentials3 it is known that the force F from the
field of force discussed here may be computed by assuming that the mass of the sphere
is concentrated to its center. As the volume of the sphere is 4x/3 R3 and the distance
between the center of the sphere and the center of the field R, we therefore find the
force F expressed as

f = -(kr~2)(y R3)t. (28)

This expression is seen to be identical with the expression (27), found by using the
surface integral method. The result from the potential theory used above was derived
by carrying out a double integration. The calculation has consequently been simplified
also in the present case by the use of the vector formula (14).

30. D. Kellogg, Foundations of potential theory, Berlin, 1929.

THE CIRCULAR PLATE WITH ECCENTRIC HOLE*
By SAMUEL D. CONTE (Wayne University)

1. Introduction. It is well known that the equation governing the small deflections
of a thin uniform plate, assumed homogeneous and isotropic, is

DAAw + P(x, y) = 0, (1)
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where P(x, y) is an arbitrary load per unit area acting normal to the upper surface,
D = 2ef/3(l — a2) is the flexural rigidity of the plate, d is the thickness of the plate, and A
the Laplacian operator in two dimensions. All quantities appearing in this and in all
succeeding equations are in dimensionless form. It is assumed that there are no forces
acting on the edges of the plate other than the reactions due to the method of fixing of the
plate. The state of stress and strain at every point of the plate can be completely de-
termined when the deflection w of points originally on the middle plane of the plate is
known. Complete solutions of the plate equation (1) under arbitrary normal loads and
for various boundary conditions are known for thin rectangular [1], circular [2], or
elliptic [3] plates. It is proposed in this paper to present a solution of this problem when
the plate is bounded by two circles, one of which is interior to and eccentric to the other.

2. Bipolar coordinates. The boundary conditions are considerably simplified when
bipolar coordinates (a, /3) are introduced. The conformal transformation

z = x + iy = c tanh \ (a + iff) = c tanh (2)

maps the rectangular region [ax g a ^ a0 , — x ^ 0 ^ ir] in the f-plane onto the region
between two eccentric circles in the z-plane. As shown in Fig. 1, the boundary of this
region consists of the exterior circle a = ax and the interior circle a = a0, with an > a, .

Fig. 1.

The constant c is the pole of the system. The straight line segments AB and CD are given
respectively by /3 = 0 and by /3 = t. Under the transformation (2) the Laplacian operator
becomes

d2
\da d/32/'+ ^h (3)

where (ch)2 = (cosh a + cos ff)2 is the Jacobian of the transformation. If (hw) is taken
as the dependent variable instead of w, the harmonic and the biharmonic equations
become respectively,

f ( ^ ^ \ d d
Aw = jc/i (^2 + — 2 sinh a — + 2 sin /S — + cosh a — cos /Sj(hw) = 0,

AAw = hih + sJV + w ~2 h + 2 d? + 0(M = °-
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Thus the biharmonic equation becomes a linear partial differential equation with constant
coefficients [4]. Separation of variables now yields as solutions the following series of
biharmonic functions which have the period 2x in /3;

oo

hw = T. <t>n(a) cos n/3 + \pn(d) sin n/3, (4)
n=0

where 4><M = A0 sinh a + B0a sinh a + D0 cosh a + E0a cosh a,

\p0 (a) = 0,

<f>i(a) = Ai Bxa + Dt cosh 2a + sinh 2a,

\pi(a) = A[ + B[a + T)[ cosh 2a + E[ sinh 2a,

0„(a) = An cosh (n + l)a + Bn cosh (n — l)a + D„ sinh (n + l)a

+ En sinh (n — 1 )a,

^„(a) = A Z cosh (n + l)a + B'n cosh (n — l)a + D'„ sinh (n + l)a

+ E'„ sinh (n — l)aj

and A„, Bn, Dn, En, A'n , B'n , D'n , E'n (n = 0,1, • • •) are eight sets of arbitrary constants.
3. Method of solution. It is now proposed to obtain a solution of the boundary value

problem consisting of Eq. (1) and one of the usual boundary conditions. The most com-
mon of these boundary conditions are those corresponding to clamped edges and to
simply supported edges. For a clamped edge the boundary conditions in terms of (hw) are

hw = *JM = o. (5)
da

For a simply supported edge the boundary conditions are

(hw) = 0,

d_
dp (6)|cosh + 0- — (1 + <r) sinh a ^ + (1 + a) sin 0 ^

+ a cosh a — cos 13j(hw) = 0.

A solution of the boundary value problem consisting of Eq. (1) and conditions (5) or (6)
is sought in the form

hw = w0 + Wi , ■ (7)

where w0 is the series of biharmonic functions (4) and wx/h is a particular solution of the
plate equation. If wx is expanded into a Fourier series, boundary conditions (5) or (6)
give rise to a system of eight equations which can be solved for the eight sets of unknowns
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which appear in w0. If, for example, a clamped plate is subjected to a uniform normal load
p, a particular solution of the resulting boundary value problem is

Vh. — A A — — -2^*
h ~ h2' 16 D'i, A = - ^, (8)

and since the deflection must be an even function of /3, the biharmonic function is taken as

w0 = <t>n(a) cos nj3. (9)
n=0

If Wi is expanded into a Fourier series, the boundary conditions yield four sets of equa-
tions for the coefficients An , Bn , Dn , En which appear in 4>n(a). Explicit expressions for
these coefficients are presented in the author's thesis, and it is shown there that the series
(9) with these coefficients converges absolutely and uniformly in a and 8 over the domain
between the eccentric circles.

4. Particular solution for an arbitrary analytic load. Consider first a load function
which is homogeneous of degree n in x and y. Expressed in bipolar coordinates such a load
has the form

^ sinh"~* a sin* 8 /t„N
P(.oc, ft = E «»* rn   ■ (10)

k±0

A particular solution of the plate equation (1) for this load function is given by

wi _ V1 a smh"-*"1"2 a sin**2 /3 ,t1»
h ~ h h"+i ' }

where the coefficients Anh are determined by the following system of equations

2(n - k + 2)(» - k + l)(fc + 2)(fc + 1 )Ank

+ (n - k + 4)(» - k + 3)(» - k + 2)(n - k + 1 (12)-

+ (k + 4)(k + 3)(k + 2)(fc + l)A„(t+2) = ®n& , (k = 0, 1, • • • , n).

This system of (n + 1) equations can be solved uniquely for the (n + 1) unknowns Anl
(k = 0, 1, • ■ • , n). These results for k — 2m, k = 2m + 1 are:

y / 1V (n ~ 2m + 2r + 2) • • • (n — 2m + 3)(r + 1)
n(2m' ~ h, } (2m + 2) • • • (2m — 2r — 1)

_ (m + l)(r + [n/2] - m + 2)\
(r + l)([n/2] + 2)

(13)
  /rn I ... //»> — O mi _J  Q \+ H (-i)r+™+In/21ln/-^~m (n + 2) • • • (w - 2m + 3)

(2 [n/2] + 4) (2 m + 1)!

(r + l)(2r + 6")
(n + 2) • • ■ (2[n/2] - 2r + 1) ®n(2[
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u..+n/2-n (n - 2m + 2r + 1) • • • (n — 2m + 2)(r + 1)
"(2m+1) f?0 ^ ; (2m + 3) • • ■ (2n - 2r)

_ (m + l)fr + [(ra + l)/2] — m + 1)
([(» + l)/2] + l)(r + 1)

[n/2]—m+€an

+ E (-i)

®n(2m-2r-l)

(w + 1) ■■■ (n — 2m + 2)(m + 1)
(14)

([(n + l)/2] + l)(2m + 3)!

(r + l)(2r + «S)1
(n + 1) • • • (2[(n + l)/2] - 2r) Ctn(2 [(n+l)/2I—2r —1) •

In these equations [n/2], for example, means the largest integer in n/2, and the
symbol tZ has the following meaning: = 0 if (» + m) is odd; tZ = 1 if (n + m) is even.
All factors in these equations must appear in descending order. When this is not the case,
as for example, when r = 0, the entire factor is to be replaced by unity.

Consider now an analytic load function P(x, y). If its Taylor's series is rearranged
in homogeneous powers of degree n in x and y together and expressed in bipolar coordi-
nates, it has the form

7-»/ ,i\ -v--* sinh" k ol sin* /3P(«, 0) = E Z a.* r*   (15)
»=o &=o ri

where &nk are known constants. By means of the method shown above a particular
solution of the plate equation (1) is given formally by

Wi , sinh (x sin 13 /ic\
~h = hh nk ir4 ( }

The coefficients Ank for each n and k can be determined by means of Eqs. (13), (14).
5. Special loads. When the load function has certain specialized forms, the peculiar

properties of the operator A in bipolar coordinates may be profitably exploited to yield
comparatively simple solutions of the boundary value problems in thin plate theory.
It may be proved by induction or by direct calculation that if un = sinh na/h", or if
un = cosh na/h", then

2n2
^n c ^n~* 1

and if vn = cos nfi/hn or if vn = sin nfi/h", then

— 2ri
Avn =  vH-! .c

Thus, if the load function is any finite or infinite sum of the functions un or vn , this
stepping-down property of the operator A may be utilized to obtain a particular solution
of the plate equation. A complete solution satisfying boundary conditions (5) or (6) may
then be obtained by following the procedure given in Section 3.

As another special case let the load function be

P(a, p) = kh3 sinh pa cos q(3, (17)
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where k is a known constant and p, q are integers but p ^ (q ± 1). If the plate is clamped
at the edges, a particular solution of (1) is readily obtained in the form

Wi = A sinh pa cos q(3,

where

k 1A =
D (p2 - q2)2 - 2q - 2p + 1

The boundary conditions may be satisfied by taking only those biharmonic terms involv-
ing cos q/3. Hence a complete closed form solution for a clamped plate under the load (17)
is given by

hw = A sinh pa cos ql3 + <t>Ja) cos q/3,

where<p„ = Aa cosh (q + l)a + BQ cosh (q — l)a + D„ sinh (q + l)a + Eq sinh (q — l)a.
The boundary conditions (5) yield four equations which determine uniquely the four
constants A„, B„, Dq, EQ. Indeed, a solution in closed form can always be obtained if the
normal load is any finite sum of terms of the following forms: h3 cosh pa cos q/3, h3 cosh pa
sin q/3, h3 sinh pa cos g/3, h3 sinh pa sin q/3. If p = (q =fc 1) in any of these loads the function
is itself biharmonic. If, for example,

P(a, p) = k h3 sinh (q + l)a sin g/3, (18)

a particular solution of the plate equation which is periodic in /3 is given by

wx = A a cosh (q + l)a sin q/3

with

k 1A = D 2 q(q + 1 )(q + 4)

A closed form solution involving only four of the biharmonic functions can again be
obtained as in the previous case. We note, however, that if the plate is simply supported
at the edges, no finite number of biharmonic terms will suffice to yield a solution of the
resulting boundary value problem under loads of the form (17) or (18).
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