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ENERGY THEOREMS AND CRITICAL LOAD APPROXIMATIONS
IN THE GENERAL THEORY OF ELASTIC STABILITY*

BY

J. N. GOODIER and H. J. PLASS
Stanford University

I. Introduction. When the ordinary uniform pinned-end column buckles under a
critical load Pi = ir2EI/l2, the potential energy measured from the straight compressed
form is

V = \EI f\"2dx -\Pi I y'2dx
or

f -jf.y"d* <«
and is zero since F « sin wx/l.

Let y now be a deflection of any form which satisfies the end conditions. Then V

?

->

Fig. 1.

as given by (1) is positive unless y sin irx/l, in which case it is zero. This follows readily
from a Fourier expansion1 of y, or from Wirtinger's inequality,2 which is that

f" z2 dx < ['21 z'2 dx, (2)
J 0 J 0

unless z = A cos x + B sin x, provided that
f»2r

z(0) = z(2ir) and / z dx = 0.
Jo

For if we reflect the bar with its deflection y in its right hand end (x = I) and combine
the inverted reflection with the original bar (Fig. 1), we have a bar of length 21, with
y'(0) = y'(2Z), and from (1)

4v r * rEl - J, " dx - 7 I « dx-

*Received February 5, 1951.
'See for instance R. V. Southwell, An introduction to the theory of elasticity for engineers and physicists,

Oxford University Press, 1941, p. 444.
2G. H. Hardy, E. H. Littlewood, G. Polya, Inequalities, Cambridge University Press, 1934, p. 185.

The authors are indebted to Prof. Polya for the suggestion that this inequality might serve the purpose.
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The substitution £ = ttx/1 converts this to

4V _
El' \l.

r>2r *2t

I y"2 d£ - jo y'2 diJ, (3)

where the prime now means differentiation with respect to and if we identify y' with
z, £ with x in (2), (2) establishes that V is positive unless y is sinusoidal.

Two conclusions follow. First, that since V is the potential energy of the bar under
the true critical load Pi , the sinusoidal buckled form is itself stable with respect to
disturbances (impulses) which project it into non-sinusoidal forms. It is neutral with
respect to sinusoidal disturbances. In the disturbances P, remains unchanged. Second,
that an approximation Pa calculated by inserting an assumed approximate deflection
ya for y in the relation

\EI f\"2 dx - \p f\'2 dx = 0 (4)
(valid when P is P, and y is sinusoidal) will be higher than /\ . For the use of (4) in
this way will yield

EI f y'a'2 dx
P> =  • (5)

y'a dxfJo

But since ya is not sinusoidal we have V > 0 and (1) yields

EI [ y'a'2 dx
P> <  —• (6)

y'a2 dx
Jq

Here we have an inequality (2) available from pure mathematics, and can use it to
establish either the first or the second conclusion.

In a plate problem the corresponding inequality, establishing that the potential
energy, (strain energy of bending minus work of critical loads on buckling displace-
ments), is positive for any displacement differing from the true buckling displacement,
is a much more elaborate one, although it can of course be formulated. A proof by means
of Fourier series is feasible for the simpler cases, such as the rectangular plate with four
simply-supported edges, but a proof for the more difficult cases such as four clamped
edges is hardly to be expected. Still less can we hope to obtain such a proof for more
complex systems such as shells, or combinations of structural elements such as stiffened
plates and shells, or the general problem of elastic stability with respect to infinitesimal
displacements.

But if we are given that the buckled form is itself not unstable, this datum establishes
the inequality, and we can then use it to prove that the energy approximations to the
critical loads will be too high. In the remainder of the paper we do this for the general
stability problem. If the buckled state were itself unstable, the energy approximation
to the critical load would be too low. Thus the usual assumption in practical calculations
that the approximation will be too high is equivalent to the assumption that in the
idealized version of the problem there is a buckled state which is itself not unstable.



1952] GENERAL THEORY OF ELASTIC STABILITY 373

2. Formulation of the general equations. An arbitrary elastic solid has initial stress
specified by the usual Cartesian components Su (i, j = 1, 2, 3), which maintain equili-
brium with initial body force F, per unit volume and surface force 7', per unit area on a
surface element whose outward direction cosines are v,-. We have then the differential
equations of equilibrium (with the summation convention for repeated indices, and sub-
scripts after a comma indicating differentiation with respect to the corresponding co-
ordinates)

Su.i + Ft = 0 (7)
and the boundary conditions of equilibrium

Suv, = Ti . (8)

The stress Su is not necessarily entirely due to F{ and 7', . It may be initial or thermal
stress existing in the absence of Ft and 7', .

This state of stress will be referred to as state I, and x; are the co-ordinates of material
points in this state (not in the unstressed state). For the present, we suppose that it is
stable. A second state, state II, is derived from it by the application of additional body
force AF, and additional surface force A71i . The displacement caused is expressed by
Cartesian components ut (not Awf), and it is affected by the presence of the initial stress.
The stress in state II is of course different from Su . To specify it we use Trefftz's stress
components'* 7c,,- (in Kappus' notation). These are non-orthogonal. A rectangular block
element in state I becomes an elementary parallepiped in state II, and these stress
components refer to the directions of its edges. The advantage of using them is that they
lead to relatively simple equations. We may write

ku = Su Tij (9)

and Tu = th since both S{j = Su and ku = k,i . Even where the r,,- vanish, this state
of stress need not be identical with that expressed by the S{j of state I, on account of
the different specification of stress components.

The differential equations of equilibrium4 satisfied by Ti; are

Tu,i + (Sikuiik), j + AFi = 0 (10)

after neglecting "non-linear" terms (TikUi\t)ti , and so restricting the investigation to
tu small compared with Sa—more precisely to the largest ri; small compared with the
largest S^ .

The boundary conditions of equilibrium satisfied by r,, are

TijVj + S,kuiAVj = ATi . (11)

When Stj = 0, (10) and (11) reduce as they should to the equations of the ordinary
theory of elasticity.

Equations (10) and (11) do not involve any stress-strain relations. Being concerned
with small departures from state I, we assume that small strain components

en = + Uj,i) (12)

3E. Trefftz, Zur Theorie der Slabilitat des elastischen Gleichgewichts, Z. angew. Math. Mech. 12, 160
(1933).

4See the reference in footnote (3).
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are related to the small stress components r,-,- by the usual form of Hooke's Law. It is
convenient to take this in the general form appropriate to the homogeneous anisotropic
solid, and to express this form in a changed notation. Write tu = r,, t22 = r2, r33 = t3 ,
7*12 = t4 , r23 = t5 , r31 = t8 and similarly for the strain components. Then the stress-
strain relations are5

Ti = c,,e; , where i and j have the range 1 to 6, and c,-,- = c,f (13)

The variational principles (stationary potential energy for equilibrium, Castigliano's
Theorem, etc.) of the ordinary theory of elasticity can be derived by considering the
variation of the strain energy of the body, and using the equations of equilibrium.6 We
follow this method now for the transition from state I to state II, with some modifica-
tion, using the equations of this article. We thus regard equations of equilibrium (or
motion) as basic, and energy principles such as stationary potential energy as derived,
rather than vice-versa.

3. A variational principle. From the quantities e<(» = 1 to 6) as functions of the
co-ordinates Xi(i = 1 to 3) in state I we may form by integration over all the volume
elements c&o of state I the integral

U(e) = | J Cififij du (14)

which would be the strain energy in the absence of initial stress. Trefftz7 has shown that
the strain energy acquired in the passage from state I to state II is

U(e) + J S.A'i dco + | / Siku{,ju(,k dw, (i, j = 1, 2, 3). (15)

We consider the variation of U(e) alone. Let arbitrary variations 5m, be added to the
displacements u( . Then, writing 8U for the complete variation of U we have from (14)

U(e) + SU = | / c,-,(e,- + 5e,)(e; + <5e,) (i, j = 1 to 6)

= U(e) + Cuie.Se, + e,- Se,) dw + U(Se),

where

U(8e) = ^ J CaSeiSe,- dw. (16)

Since c,-,- = cfi , we have

SU = J c.^Se, dco + U(5e) = J r,-5e,- dco + U(Se). (17)

We now return to the range 1, 2, 3 for i, j and k, and write instead of (17):

SU = J Tij doi -|- U(8e). (18)

6A. E. H. Love, Mathematical theory of elasticity, Cambridge University Press, 1927, Ch. 3.
6E. Trefftz, Handbuch der Physik, Vol. 6, Springer, Berlin, 1928, p. 68.
'See the reference in footnote (3).
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For the integral in (18) we have, taking Sei:- from (12),

^ J Tii(SUi,i + SUi.i) dw — J Tij Su;,i dco (since r,-,- = r,-,)

= J (r,-, dUi),,- dw — J Tn,j Siii dw.

By an application of the divergence theorem to the first of these two integrals we may
write the result as

Ta 8Ui Vj da — J Tij,j 8Uj dco,

where da and 2 refer to the boundary surface and v, are the direction cosines of the
normal, all in state I. We now eliminate r;,- by use of the boundary conditions (11) in
the first integral and the equilibrium equations (10) in the second. The result is

[—SikUi,kVj + ATi] 5Ui da + J [(SjkUi,k),j + AFt] 8u{ dw (19)

The first part of the second integral is transformed as follows

J (SjkUi,k),j 8ut dw = j (SjkUi.k 8Ui),j dco — f SikUi,j 8uiikdu

= J SjkUi,k 8ut Vj da — j" SikUi,j 8uitk dco.

With this (19) is simplified by cancellation of the two surface integrals involving Sik .
Recalling that (19) is equivalent to the integral in (18), Ave have as a new version of
the latter equation

8U = J AT, 5m,• da -j- J AFi 8Ui doi — J 6m,,k dw 4" U(8e). (20)

In this the u{ are the actual displacements caused by the application of the additional
forces ATi and AF( , corresponding to the passage from state I to state II, and the
8Ui are arbitrary additional displacements. Both the u{ and the Sw, are restricted to
smallness by (12) and (13).

Now let Sn , Fi , T{ , AF, , ATi be fixed, but let u4 for the moment be three inde-
pendent functions of the xt , not required as yet to be the correct displacements in the
passage from state I to state II. The result (20) suggests consideration of a function of
these Ui in the form

V = U(e) — f ATiUi da — J AFfUj dw + ^ J $,*«<.,«,•.* dw. (21)

On varying the it; (as they appear explicitly, and also in U(e)) we have

8V = 8U — J ATi 8Ui da — J A Ft 8ut dw + | J Sik 8(uitiui,k) dw. (22)
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Now let Ui be given the actual values of state II. Then on account of (20) we have

SV = J 6(Ui.,Ui,k) — Ui.,- doo + U(Se). (23)

But

§Sit 8(uiriui,k) = %Sik[(Ui + 5m,),,(m; + 5m,),» - .*]

= \Sik[8Ui,i Ui,k + uifi 5m,-.t + 5Uij 5m,-,i].

Since Sjk = Stj the first term in the brackets can be combined with the second to give
the result

i<S/i[2wi,j 5Ui,k + 5m,-,,' 5m,■ ,i].

Then (23) reduces to

5V = 0 -f- U(Se) -f- ̂  J" &ik 5m,-.,- 5m,^ du>, (24)

the zero indicating that the first order (in 5m.) variation of V vanishes. This property
of course would be characteristic of the potential energy in state II as an equilibrium
state. Referred to state I as zero, the potential energy consists of the strain energy (15)
together with the potential energy of the body and surface forces, which is given for
state II by

■ j" (Ti ATi)Ui da J (Fi -f- AF,-)mj dw.

It can be shown by means of (7) and (8) that the terms here in and F, cancel the
middle term in (15), and hence that V as given by (21) is in fact the potential energy
of state II when the m; in (21) denote the actual displacements of state II.

4. The stability of state II. Our object being to deduce a generalization of the in-
equality (6) when the stability of state II is given, we now seek a necessary condition
for this stability.

Let the particles of the body be projected from state II by some disturbance. Then
at time t they are in motion with displacements 5m, (functions of the co-ordinates x, of
the particles in state I), and corresponding to 5u; we have additions 5t,,- to the Trefftz
stress components (9). There is, by hypothesis, no change in the forces Ft + AF{ ,
T, + ATi of state II except at fixed supports where reactions may be induced. During
the motion these are carried with the particles on which they act in state II. The equa-
tions of motion are, from (10)

{tu + STij),j + [Sn(u{ + 5m,),*],,■ + AFi = pHiii ,

where 5m< = d28Ui/dl2 (the acceleration) and p is the density. Subtracting (10) we have

T«>,)• + ('Sit5M,-,t),,- = p5«i .

Multiplying by 5m, and integrating over the volume we find

J Taj 8Ui du + J (Sit 5M,,jt),i 5Mi dcc = J | p 8Ui 5u; dw, (25)
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and the term on the right is the time derivative of the kinetic energy. The first integral
on the left of (25) can be written as

J (Stu Slli)dial — J 5t,,- 5w,-.,- d(il

and after transformation of the first of these integrals by the divergence theorem, as

J 5 T;, 8v,i Vj da — J 5r,-,- 5m, ,,- dco.

Similarly the second integral on the left of (25) transforms into

J Sik 8uiik 5Ui Vj da — J Sit bUi,k SUij dw.

Introducing these transformations in (25), and writing T for the kinetic energy, we have,
with some rearrangement,

dT
dt + J (St;,- + Sit 5Ui,k) 5Ui,j dw = J (8th + Sit Sui.t) 8u{ i>j da. (26)

The bracket appearing in the integral on the right is, by (11), the addition to AT7,- ac-
companying the motion, and this is zero by hypothesis except at fixed supports, where
the 8Ui vanish. The integral therefore vanishes. The integral on the left of (26) is the
same as

{l / 5t" 5e" \ / ^'k 8Ui,i 8u<'h (27)

This is readily verified by changing 8Tij8eii to 8t,86,(1 = 1 to 6), then to c,,5e,5e, ,
carrying out the differentiation with respect to t, and making the combinations of terms
permitted by c,-,- = c,, and Sik = Ski . It is evident that the bracket in (27) is identical
with 8V as given by (24). We can therefore re-express (26) as

f + TT-« ^
showing that T -\- 8V remains constant during the motion following the projection from
the equilibrium state II. This of course is the energy equation of this motion, and
exhibits 8V as the potential energy referred to state II under the conditions of this
motion—no change of body and surface force except at fixed supports.

Stability of state II implies an immediate decrease in the kinetic energy following
the projection from state II, and therefore an immediate increase of 8V. Thus stability
means that 8V as given by (24) is positive for arbitrary 8u, . If it is given that state II
is not unstable, (24) is not negative.

We may take the u{ to be zero, as a special case, state II then being the same as
state I. Evidently the equilibrium in state I, under the initial stress , will be unstable
when the right hand side of (24) is negative for any 8u{ which vanish at fixed supports.

The value which V, as given by (21), takes when the m, are the correct displacements
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of state II can be reduced to a simpler and useful form. Writing —I for the last integral
in (21) we have

1 g ^ do)

2 j* ,k^i) , j dill g ^ (BikUi ,Jc) ,jUi do)

2 j* $i k^i , kMiVj d<T 2 ^ (.$it k) t jUi (JCO.

Using (11) and (10) respectively in the first and second of these integrals we find

—I = | J hTiUi dcr — | f TijUiVj da + | J AF{Ui dw + | J rda (29)

If in the last integral we write

(7" j U i) f j Ti jUi t j ,

the first of the two resulting integrals will, by the divergence theorem, cancel the second
integral on the right of (29). Then, observing that, since r,-,- = th and eu is given by (12),

2 J* t% , j dcc 2 J* TijG i j do) = U(e),

we can rewrite (29) as

— I = | f ATi Ui da + | J AFi Ui du — U(e).

This form is valid only when w; are the correct displacements of state II, because (10)
and (11) have been incorporated. Returning to (21) we have the corresponding value
of V as

V = — | J A Ti Ui da — | J AFi u: do> (30)

5. Elastic buckling. We have so far been concerned with two neighboring equilibrium
states, state I and state II, the passage from state I to state II being effected by additional
surface and body forces A Ti , AF{ . When the passage is a buckling deformation, there
will be no change in body force (e.g. gravity), but for very exceptional problems, and
we may take AF, = 0. The surface forces may be taken to change at supports (e.g. the
transverse reactions induced when buckling occurs in a column with one end clamped,
the other pinned), but not elsewhere (the loads remain unchanged during buckling,
moving with the particles they act on).

Let the supports be such that no work is done by the reactions on the buckling dis-
placements (as is true for the common boundary conditions of bars and plates. If work
is done, as by elastic restraining moments, the elastic restraints may be included in the
structure, and their fixed supports are then of the assumed type).
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Then each integral in (30) vanishes, and therefore V — 0. Thus (21) now yields

V = U(e) + | j SilcUi,jUiik da = 0 (31)

which is a generalized energy relation valid when Sjk is a critical state of stress, and the
Ui are actual buckling displacements.

But U(e) is necessarily positive for any e*,- since it has the form of the strain energy
in the absence of initial stress. We have therefore from (31)

I = 2 J SikUi,jUi,k da < 0 (32)

and hence for a critical state I is positive.
The initial stress Sik , now of course a critical state of stress under which buckling

from state I to state II is possible, can be represented as

Slk = FS% , (33)

where S°jk is a non-critical stress tensor having the same distribution but a non-critical
magnitude, and T is a positive multiplier. The S°ik being chosen, we inquire what value
of T corresponds to a critical state. It now follows from (32) that

7° = / S"lku,,,ulik da >0 (34)

which defines 7°.
Introducing (33) in (31), and using the equality in (34) we have

r = (35)

This holds, giving the critical value of F, when U(e) and 7° are evaluated from the
correct buckling displacements u, .

We now write r" for the quantity which is calculated from the formula (35) using
functions u\ other than u, in U(e) and 7°, leaving S°jk in the latter unchanged. We can
then inquire what choice of u\ will yield the least value of T'. Let u\ = ut + 6m,- , m,
being the correct buckling displacements, and correspondingly write T' = T + 5T. Then

r . ,r U(e) + SU U(e) + TSI° + (8U - T57°)r + sr " r + m* " FTlr ' (36)
Let the variations <5it, satisfy the same boundary conditions as the u{ . Then

[ Al'i SUi da = 0,
J 2

and we have from (22)

SV = SU + ^ J Sit S(Ui,iUiik) du

= 8U + | T J S% S(uifiui,t) da

= 5U - T 57°
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by the definition of 7° in (34). Putting this in the last member of (36), and at the same
time replacing U(e) by TI° from (35), we find

8V5r = „ (37)
7° + 61

In section 4 we found that when state II is itself stable SV as given by (24) is positive.
We now define state II as a buckled state which is itself stable with respect to dis-
turbances which project it into a different configuration (the u{ + 8u{ not merely pro-
portional to the Ui). These disturbances correspond to the "non-sinusoidal disturbances"
of the column in section 1. Our "incorrect" displacements u, + 5u, are of this character,
and therefore bV is positive. Since, by (24), hV is zero in the first order (in <5w,) and
positive in the second, we have from (37) that 5T is also zero in the first order, positive
in the second order, and hence that the correct value T is the lower bound of the ap-
proximations r'.

Unlike SV, ST does not terminate with the terms of the second order. It is con-
ceivable that the dUi could be chosen (not small compared with the u{) so that the
denominator in (37) becomes negative. Then the approximation r' would be smaller
than T.
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