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CD = 2/i(l + Q)I/2j^l — cos/3 + — sin/3 log sec/3 J,

(36)
2 hC, = (1 + Q)1/2 j^l — cos /3 + — sin /? log sec /?J.

The foregoing general solution for Q small is bound by the condition that /3 should
not be small in comparison with Q. This merely implies an upper limit to the permissible
width of jet and is no handicap in practice. Within the practical range of blockage ratios
and cavitation numbers, the solution holds good.

When Q is very small, the following first approximations may be used:

\ =%(0),

(37)

i 2,1 • „= ~Q sm

2 h ., .a = -Q (1 - cos p),

CD = Ci = 2h(l — cos/3).

When Q —» 0, those results become those for the infinite cavity discussed in Part I.
It is not part of the present object to give detailed numerical results for application

to arbitrary configurations: these it is hoped to present elsewhere.
Acknowledgement is made to the Chief Scientist, British Ministry of Supply, for

permission to publish Part II of this paper. The views expressed in the paper are those
of the authors.
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A NEW VARIATIONAL PRINCIPLE FOR ISENERGETIC FLOWS*
By C. C. LIN** (Massachusetts Institute of Technology)

In a paper by Rubinov and the present author,1 it is shown that the variational
principle for irrotational flows of a compressible gas can be generalized to isenergetic
flows. The functions to be varied are the stream function and the density distribution.

*Received Nov. 8, 1950.
**Consultant, U. S. Naval Ordnance Laboratory. The present work was carried out for this Labora-

tory and sponsored by the Office of Naval Research.
'Lin, C. C. and Rubinov, S. I. On the flow of curved shocks, J. Math, and Phys. 27, 105-129 (1948).



422 NOTES [Vol. IX, No. 4

For such flows, L. Crocco has introduced a new stream function, which depends on the
entropy. The advantage of this apparent complication is to make the velocity com-
ponents directly expressible in terms of the partial derivatives of this new function.
Thus a single differential equation containing only this stream function can be more
explicitly obtained. In this paper, it will be shown that the same integral used in earlier
variational principles yields Crocco's equation when his stream function is being varied.

Following Crocco, we shall refer all speeds to the maximum speed attainable in the
field. The pressure p and the density p are referred to suitable units consistent with this
choice of typical speed. Then the isentropic acoustic speed c is

C2 = 7 2 (1)
P

for an ideal gas with ratio of specific heats y. The condition of constant energy may be
rewritten as

c2 = (1 - w2), (2)

where w is the total speed. If the stagnation density for the stream-line of zero (reference)
entropy is taken as reference, the density is given by

pea/R = (1 - W2)1/(T-1), (3)

where S is the entropy and R is the universal gas constant.
Crocco's stream function SE' is so defined that the velocity components u and v along

the directions of increasing x and y are given by

y'u(i - w2)1/lT_1> = ,

(4)
y'v( 1 - uf)1"*-" = ,

where e = 0 is the two-dimensional case and e = 1 is the axially symmetrical case. In
the latter case, as usual, x is taken along the axis of symmetry and y is in a perpendicular
direction. The vorticity is

«=». - Uy = y\i - s'm.

When u and v are substituted from (4), this leads to Crocco's equation for the stream
function

(l - !)*- - (1 - ~eJ = V"Q - vr)ty+"/iy-u($ - l). (5)

We shall now show that

SI = 8 JJ (p + pw2)y' dx dy = 0 (6)

with suitable boundary conditions, will lead to Eq. (5). By use of (1) and (2), the integral
I becomes
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V dx dy (7)1 = h IIAW) exp ["7=^ L m d*-
with

A(w2) = {(7 - 1) + (y + l)w2}(l - wy^-",

where SPo corresponds to the streamline along which S = 0. In this integral, w is supposed
to be expressed in terms of and ^ through (4). In particular, w2 can be expressed in
terms of ^2 + by

y2'B(w2) = *2 + *2 , B(w2) = w\ 1 - w2)*ny-" (8)

The variation 51 consists of two parts: (1) the direct variation of (2) the variation of
XI' through w2. The latter part can be easily transformed into variation of ^ by (8). By
noting that

A'{v?)/B'(w2) = 7(1 - w2)-1/ly~v

we obtain

51 = ^ jj A(w2) exp ~ZT\ [ ffW ^ y' dx dy

+ JJ (1 - exp j^_~Z~[ fW dx dy.

With boundary condition = 0, 51 = 0 leads to the equation

-£i(lexp .27
L 7

£ »(*) (l*

+«*>[-^i C
A(w2)

   exp
7 - 1 L 7 ~zr\ ?(*) d&^gWy'.

By direct differentiation and by use of (4) and (2), Eq. (5) is verified.
For convenience of comparison, we record that

d^ __ S/R
df ~

in the present dimensionless form, where \p is the usual stream function.


