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ON DOUBLE-PULSE STABILITY CRITERIA WITH DAMPING*
BY

M. MORDUCHOW and L. GALOWIN
Polytechnic Institute of Brooklyn

Summary. A simple necessary condition for the stability of a linear dynamic system
with elastic and damping characteristics which vary periodically with the same period
is derived. General explicit necessary and sufficient conditions for stability are then
developed for a double-pulse system. Such a system can be characterized by a pair of
eigenvalues, or complex frequencies, corresponding to each half-period, and the stability
of this system depends only on these complex frequencies. It is shown that a necessary,
though not sufficient, condition for the stability of any such system is that the arith-
metic mean of the real parts of all four of the complex frequencies over an entire period
be negative or zero. This is shown to be true, more generally, for an n-pulse system.
The physical significance of the results is discussed, and numerical examples are given.

Introduction. A variety of physical phenomena1 are characterized by a linear homo-
geneous differential equation with periodic coefficients. Sometimes the chief interest is
in the stability of the solutions of such equations, rather than in the solutions themselves.
If the system which these equations characterize is such that the coefficients vary
(periodically) by changing discontinuously from one constant value to another one or
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Fig. 1. Double-Pulse Function F(t) with Period T (= 2x).

more times during a period of variation (Figs. 1 and 2) then an exact solution of the
equations can in principle be obtained without difficulty. Coefficients varying in the
manner of Figs. 1 and 2 are called "rectangular pulses". In particular, if the coefficient

*Received March 29, 1951.
'Examples are given in: (a) B. Van der Pol & M. J. O. Strutt, On the stability of the solutions of

Mathieu's equation, Phil. Mag., 5, 18 (1928); (b) S. Timoshenko, Vibration -problems in engineering,
second edition, D. Van Nostrand Co., N. Y., 1937, Chapter III; (c) J. P. Den Hartog, Mechanical vibra-
tions, third edition, McGraw-Hill Book Co., N. Y., 1947, p. 408.
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assumes only two different constant values, one for each half-period of variation (Fig. 1)
it is called a "double-pulse". In cases in which the periodic coefficients do not vary as
rectangular pulses, it is often possible to obtain approximate or at least qualitative
solutions by replacing these coefficients by either double pulses or four pulses.2 This
type of approximation has, in fact, been recently applied.3

The purpose of this paper is to present explicit stability criteria for systems which
can be represented by equations with periodic, especially double-pulse, coefficients for
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Fig. 2. Four-Pulse Function F(t) with Period T.

the damping as well as for the elastic characteristics. Such a system without damping
has been analyzed in detail by Meissner4 and by Van der Pol and Strutt.5 Schwerin6
subsequently extended this investigation to systems with linearly varying character-
istics. A particular double-pulse system with damping has also been investigated,7
without, however, attempts to derive explicit equations and conclusions for damped
systems in general.

The results obtained in the present analysis serve to present useful theorems of
physical interest, to demonstrate some significant conclusions which might not be
readily foreseen without the mathematical analysis, and to facilitate any actual stability
calculations based on the double-pulse method.

General theory. The free motion of a linear dynamic system with spring stiffness k
and damping coefficient / varying periodically with time, with period 2ir. can be repre-
sented by the equation:

®" + + Kt)x = o (i)
2B. Van der Pol and M. J. 0. Strutt, op. cit.
SG. Horvay and S. W. Yuan, Stability of rotor blade flapping motion when the hinges are tilted. General-

ization of the "rectangular ripple" method of solution, J. Aero. Sci., 14, 583-593, (1947). Also, S. W. Yuan
and M. Morduchow, On the stability of the transient motion of helicopter blades in flapping and lagging,
Reissner Anniv. Vol., J. W. Edwards, 1949, p. 163.

4E. Meissner, Uber Schiittelschwingungen in Systemen periodisch veranderlicher Elastizitdt, Schweizer.
Bauzeitung, 1918, p. 95 (1918).

5op. cit.
6E. Schwerin, Ein allgemeines Integrationsverfahren fur quasiharmonische Schwingungsvorgange,

Z. Techn. Phys. 12, 104 (1931).
7G. Horvay and S. W. Yuan, op. cit. Also, S. W. Yuan and M. Morduchow, op. cit.
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where x(t) denotes displacement, the primes denote differentiation with respect to the
time t, and fit) and kit) are functions having the period 2ir. By letting

x = v(t) exp ("I/ fdtj, (2)

Eq. (1) can be transformed into the form

V" + k^v = 0, (3)

where kji) has the period 2x. By Floquet's theory8 at least one particular integral of
Eq. (3) is of the form

Vi — 4>{t) exp (fit) (4a)

where 4>{i) is a function with the period 2%, and n is a definite constant. From this it
can be shown that a second independent integral of Eq. (3) must have the form

v2 = ii(t) exp (-fit) (4b)

where has the period 2x.
From Eq. (2), and from the fact that, due to the periodicity of /(<),

r f(t) dt = constant = C, (5)

say, it follows that the solutions Xi{t) and x2(t) of Eq. (1), corresponding to i\ and v3
respectively, will satisfy the following relations, regardless of the time t:

Xi(t + 2tt)/x1{() = (t! , x2(t + 2r)/x2(t) = <t2 (6a)

where and u2 are constants given by

o-„ = exp (2717* - iQ, o-2 = exp (—2^ — |C). (6b)

The general solution of Eq. (1) can be written as

x = A^t) + A2x2{t), (7)

where Ax and A2 are arbitrary constants.
The dynamic system may be defined as stable when both of its component free

motions x'i and x2 subside with time, and unstable if either of these motions amplifies
with time. From Eqs. (6a) it then follows that the system will be stable if | o-j | < 1
and | <t2 | < 1, while the system will be unstable if either | <rx \ > 1 or | cr21 > 1. The
case ] o-j | = 1 and | <r2 \ = 1 may be defined as one of neutral stability.

Equations (6b) imply that ow2 = exp ( — C). Hence in order that both | crt } < 1
and | <j2 | < 1, it is necessary that C > 0. This can be expressed by the following theorem:

Theorem I: A necessary condition for the stability of a dynamic system characterized by
an equation of the form (1) is that

I 2r

f(t) dt > 0

8M. G. Ploquet, Sur les Equations diff&rentielles lintaires & coefficients piriodiques, Ann. Ec. Norm. 12,
47 (1883). Also, E. T. Whittaker and G. N. Watson, Modern analysis, Macmillan Co., N. Y., 1948, pp.
412-413.
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Physically this condition can be interpreted as requiring that the average value of
the periodic damping coefficient /(1) during any period must be non-negative. Thus, for
stability, there must in the average be a positive damping force.

Double-pulse system. To investigate, in particular, the stability of a double-pulse
system with damping, let /(t) and k(t) vary periodically in the manner of Fig. 1, i.e.
let f = f i and k = kx for 0 < t <x, while / = f2 and k = k2 for ir < t < 2ir; the
constants /i , f2 , k^ and k2 may be positive or negative. Then Eq. (1) can be solved
for each of the two time-intervals as a linear equation with constant coefficients. The
solution can be expressed as:

x = Ci exp (pit) + Ci exp (fit), 0 < t < t
(8)

x = C2 exp (p2() + C2 exp (p2t), ir < t < 2x

where the C,- and C, are arbitrary constants, the p, and p, are constants given by:

Pi ~ ~2 + (£)' - t, - -4 - [(I1)1 - *,]
11/2

(9)

The Pi and p, are essentially eigenvalues corresponding to each half-period of variation
of the damping and elastic coefficients, and are sometimes called "complex frequencies".
Their physical interpretation follows from Eqs. (8). Thus, if a system were characterized
by constant dynamical coefficients leading to a (single) pair of complex conjugate values
for p and p, then the system would oscillate freely with a natural frequency proportional
to the imaginary part of p or p, and would be damped out with a logarithmic decrement
directly proportional to the negative of the real part and inversely proportional to the
imaginary part of p or p. A system with constant coefficients characterized by a single
pair of real values of p and p would be non-oscillatory and would be stable if both p
and p are negative, but unstable if either p or p is positive. For convenience, the negatives
of the real parts of p, and p, will here be called "damping factors".

The arbitrary constants C,- and C',- in Eqs. (8) are related by the two conditions of
continuity of displacement x and velocity x at t — t. Moreover, the following two
additional conditions can be prescribed:

(x),.2t = <t(x)„o , (x')i-2x = <r(x')t-o , (10)

where c is a constant, to be determined. It can be shown from Eqs. (2), (4a, b) and (7)
that by satisfying conditions (10), initial conditions are implicitly prescribed so that
A2 or Ai in Eq. (7) will be zero,9 and so that consequently the two values of <r which
will thus be obtained will correspond exactly to and a2 respectively of Eqs. (6b).
By applying the continuity conditions and conditions (10) to Eqs. (8) a set of four
linear homogeneous equations in Ci , Ci , C2 and C2 is obtained. The condition for the
existence of a non-trivial solution to these equations leads to a determinantal equation,
which when expanded can be written in the form:

2
<T + Na + M = 0, (11)

where

"This fact, although implied, often appears not to be clearly stated in the literature.



1952] DOUBLE-PULSE STABILITY CRITERIA WITH DAMPING 21

N _ (Pi ~ V2)(V2 ~ P.)(Plf>2 + P1P2) + (p2 - Pl)(P2 ~ Pl)(PlP2 + f 1P2)

(Pi - Pl)(P2 - P2)

M = P\P\P%P2 , (12b)

P, = exp (p,t), Pf = exp (p,jr).

The roots

2 ^ .(f)' " «]"' 03)
of Eq. (11) then determine the stability of the system.

Three general cases of double-pulse systems, depending on whether the eigenvalues
Pi and Pj are real or complex, can be distinguished. By substitution into Eqs. (12a, b)
the following expressions for N and M in these various cases are obtained (at , b,- , c,-
and dj denote real positive or negative constants, while i = (—1)1/2).

Case I. Two pairs of complex conjugate eigenvalues:

Pi — —Oi + Ihi, Pi — — ai — b{i, p2 = — a2 + b2i, p2 = — a2 — b2i.

2bib2N = (exp [—ir(at + a2)]){[(a! — a2)2 + (&, — &2)2] cos (bt — b2)ir
(14a)

— [(ai — a2)2 + (bi + b2)2] cos (61 + b2)ir}

M — exp [—27r(ai + a2)] (14b)

Case II. Two pairs of real eigenvalues:

Pi = —Cj , pi = — di , p2 = —c2 , p2 = — d2 .

(ci - di)(c2 - d2)N = (di - d2)(c2 — c,) {exp [—rfo + d2)]

+ exp [-tt(c2 + rf,)]} (15a)

+ fe — di){d2 — c^{exp [—7T(c, + c2)] + exp [—7r(rfx + d2)]}

M = exp [—ir{ci + di + c2 + d2)] (15b)

Case III. One pair of complex conjugate, and one pair of real eigenvalues:

Pi = —at + bii, pi = —at ~ V, p2 = ~c2 , p2 = — d2

bt(d2 — c2)N

= (exp [— iro!]){[(d2 — at)(at — c2) — 6?][exp (—ird2) — exp (—ttc2)] sin btir (16a)

+ bt(p2 — d2)[exp (—ird2) + exp (—irc2)] cos btx]

M = exp [—7r(2a1 + c2 + d2)} (16b)
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For any given double-pulse system, the stability characteristics can be quickly and
straight-forwardly determined by calculating the p,- and p,- from Eqs. (9), evaluating
N and M by means of the appropriate pair of expressions from the set (14a, b), (15a, b)
and (16a, b), and then obtaining the two values of a from Eq. (13). It should be noted
that these calculations will always involve only real quantities.

From Theorem I it follows that for stability of a double-pulse system it is necessary
that (fx + /2) > 0. According to Eqs. (9), this is equivalent to the following theorem:10

Theorem II: If a double-pulse system is characterized in one half-period by eigenvalues
Pi and Pi and in the other half-period by eigenvalues p2 and p2 , then a necessary condition
that the system be stable is that the arithmetic mean of the real parts of Pi , Pi , p2 and p2
be negative or zero. Alternatively, a sufficient condition that the system be unstable is that
the arithmetic mean of the real parts of Pi , Pi , p2 and p2 be positive.

By virtue of Theorem I and of relations of the form (9) it can be quite similarly
proven that Theorem II is valid more generally for an n-pul.se system. Moreover, it
similarly follows that if during any period of an n-pulse system, f(t) assumes constant
values fi , f2 , • ■ ■ , fn during unequal time-intervals, then a necessary condition for
stability is that the weighted mean of the real parts of the complex frequencies pl to
pn be negative or zero, the weights being proportional to the time-intervals corre-
sponding to each of the p's.

It may be noted that the above necessary condition for the stability of a double-
pulse system is in a sense less stringent than that of a system with constant elastic
and damping coefficients, since in the latter case it would be required that each damping
factor be positive, and not merely the average of the damping factors. It must be
observed, on the other hand, that the theorems derived here give only necessary, but
not sufficient, conditions for stability. This follows essentially from the fact that although
the conditions | o-i | < 1, | <r2 | < 1 always imply 0-^2 < 1, the converse is not necessarily
true. As a consequence, a double-pulse system may be unstable even under conditions
for which a constant-coefficient system would be stable. For example, it is well known
that in the absence of damping forces a constant-coefficient system will be neutrally
stable when the restoring force is positive (k > 0), leading to purely imaginary complex
frequencies. However, as can be verified by putting ai = a2 = 0 in Eqs. (14a, b) and
noting that values of &i and b2 (e.g. bt = 1.5, b2 = 0.5) exist for which | N \ > 2 and
hence j <7 | > 1, a double-pulse system may in such a case be unstable.

From Eqs. (14) and (16) in conjunction with (13) it is seen that although the neces-
sary condition for stability stated here involves only the damping factors, the necessary
and sufficient condition involves the natural frequencies as well. This is partly in contrast
to a system with constant damping and spring characteristics, where the stability de-
pends exclusively on the damping factors. Considering, for example, Case I, which is
in practice the most important case, it can be seen from Eqs. (14a, b) that a large positive
value of (cti + a2) tends to keep the values of | N j and j M | far below unity, and hence
strongly tends to make the system stable. This result appears quite reasonable on
physical grounds. Nevertheless, it will be found that for any given value of (g^ + a2),
i.e. for any given amount of damping in the average, there will exist values of the fre-

10The theorem which follows could also be directly derived by noting that for stability it is necessary
that | M | <1, and by using the expressions (14b), (15b) and (16b) for M.
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quency ratio bi/b2 for which the system will be unstable. This can be verified by ob-
serving that for any given positive value of (ai + a2), however large, sufficiently large
values of bx/b2 (or b2/b1) can be found for which [ N | as given by Eq. (14a) will be
large enough to make at least one of the roots in Eq. (13) greater than unity in absolute
value.

Examples
1. As an example illustrating the insufficiency of the necessary condition derived

here for stability, suppose that in Case I flj = 5, a2 = —4 and bt = b2 = 1.5. Then
the average of the damping factors and a2 is here positive; nevertheless this system
is unstable, for Eqs. (14a) and (14b) yield: N = 38.0 exp (—t), M = exp ( — 2tt). The
larger of the roots of Eq. (13) will be | <r | = 1.64, which exceeds 1 and hence implies
instability.

2. The purpose of the second example is to show that a system pertaining to Case II
can, contrary to systems with constant characteristics, be stable even when the average
of a single pair of damping factors over a period, e.g. (c, + d2)/2 or (cl + c2)/2, is
negative. Thus, let Ci = 1, c2 = —1.333, dy = 1.333 and d2 = 0.880. Then (c: + c2) < 0.
Eqs. (15a, b) however give: N = —0.209, M = 0.00169. The roots (13) for <r are ux =
0.201 and o-2 = 0.0081, and the system is therefore stable.

It may be noted that in either of the above two numerical examples, it might have
been difficult to predict in advance the stability or instability of the given system.

Conclusions
1. A necessary condition for the stability of a linear dynamic system with damping

coefficient j(t) and elastic coefficient both varying periodically with the period 2x is

/'Jo

2 r

f(t) dt > 0.

2. In particular, a necessary condition for the stability of an n-pulse system is that
the weighted arithmetic mean of the real parts of the 2n "complex frequencies" char-
acterizing the system during any period of the variation of the damping and elastic
coefficients be negative or zero. The weights must be proportional to the time-intervals,
of any period, corresponding to each of the complex frequencies. For equal time-intervals,
of course, the simple arithmetic mean is taken. The case n — 2 with equal time-intervals
("double-pulse"), was of especial concern here.

3. Contrary to systems with constant damping and elastic coefficients, the necessary
and sufficient condition for the stability of a double-pulse system depends, in general,
not only on the damping factors, or (negative) real parts of the complex frequencies,
but also on the natural frequencies, or imaginary parts of the complex frequencies.
Moreover, contrary to a system with constant coefficients, a double-pulse system can
be stable even when not each of the damping factors is positive or zero.

4. The stability characteristics of any given double-pulse system with (positive
and/or negative) damping can in practice be quickly calculated from the equations
developed here.

The authors hereby express their thanks to Professor R. M. Foster for his valuable
suggestions and comments.


