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numbers is comparable to the heat dissipation. From (17) and (18) the efficiency of energy
transfer between different wave numbers can be estimated as

^VmFh (33)
K, L F(Jc) dt _J t rans f er KH \_M(k) dt Jtran,fer

Hence kc is given approximately by

(» + £) =* (34)\P

Using (29), (34) can be written as

I2 ~ R3/i (35)
/Cq

where R is the modified Reynolds number defined by

R b pv„/. (36)

Equation (35) means that the range of the Kolmogoroff region increases with increasing
Reynolds number. The behavior of the energy spectrum between ko, the lower limit of
the Kolmogoroff region, and the boundary must depend on some extra-dimensional
quantities related to the boundary or the detailed mechanism of energy supply. Hence no
universal energy spectrum can be given in that region. The importance of this transition
region will depend on the efficiency of energy coupling between the magnetic field and the
velocity field and also on the detailed manner as how the energy is supplied. In ordinary
turbulence it is assumed that such a transition is unimportant and this assumption is
experimentally verified.5 It may be natural to make the same assumption here. Due to
the lack of experimental evidences, such assumption is always subject to criticisms and
future verifications. But if this is the true case, then at high Reynolds number the total
mechanical energy must be comparable to the total magnetic energy in a conducting fluid.

The author is indebted to Professors E. Fermi and S. Chandresekhar for discussions.

6See e.g. Heisenberg, Zeit. f. Phy. 124, 628 (1947).

ON THE INVERSION OF THE VOLTERRA INTEGRAL EQUATION*
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When the given kernel of the Volterra integral equation can be represented as a
Laplace transform, the same representation is obtained for the resolving kernel of the
equation. For this case the solution is given in explicit form.

The Volterra integral equation

f(x) = g(x) + f k(x - y)g(y) dy {x > 0) (1)
Jo
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has proved to be of interest for the solution of many problems in physics. Its solution
can be reduced to that of the simpler equation1

k{x) = m(x) + f k{x — t)m(t) dt. (2)
Jo

Here, k(x) is the given kernel and m(x) the resolving kernel of Eq. (1). Volterra1 has
given a solution of this equation in form of a series development. Doetsch2 has solved
it with the aid of the Laplace transform and Titchmarsh3 with the aid of Fourier trans-
forms. All these solutions however allow for very general conditions to be imposed
upon the given kernel.

In physics integral equations of this type mainly occur in the theory of dielectric4
and elastic5 relaxation processes. In these applications k(x) belongs to a very particular
class of functions; it can be shown to satisfy conditions which will allow it to be repre-
sented as a Laplace transform

k{x) = [ r(s)e~x' ds. (3)
Jo

The purpose of the present paper is the discussion of the solution of Eq. (2) under the
condition that k(x) is given by the expression (3).

Equation (2) is of the convolution type. Application of the Laplace integral method
of inversion6 gives therefore

M(v) — —Mp)— (4)m 1 + K(p)' {)

where

K(p) = [ e-'xk(x) dx, (5a)
Jo

M(p) = f e~vxm(x) dx. (5b)
Jo

It follows from (3) and (5) that

K(p) = [ e-BX dx [ r(s)e~xl ds. (6)
J o Jo

Suppose that r(s) is a real function of integrable square over (0, co). Then the order of
integration in Eq. (6) can be inverted and

(7)
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K(p) is therefore a Stieltjes transform. As such it is regular in the p plane cut along
the negative real axis and the functions K(pe"'T) are also of integrable square.

Applying the complex inversion theorem to Eq. (4) one obtains

m(z) = h L» r+me"dp' (c >0)- (8>
Suppose also that

| 1 + K(p) | > 5 > 0.
Then the line of integration can be deformed into a loop round the negative real axis,
so that ultimately

m(z) - -■ r f-2iri J0 Ll
dp. (9)K(pe~'T) K(pe+iT)

+ K{pe~iT) 1 + K(pe+ir) J

Equation (9) can be written in the form

m(z) = [ f(p)e~p* dp. (10)
Jo

This shows that under the given conditions the resolving kernel too is represented by
a Laplace transform, and

^>"25 K(jx—) _ £(>»"■) 1
Ll + K(pe~iT) 1 + K(pe+iT) J' (11)

Here, Kipe*'*) is a shorthand way for writing limj_0 K( — p ± id). Then, according
to Eq. (7),

K(j>e'ix) = lim r(8) ,x ds, (12)
H Jo « - P ±

and

Sf I i -fL a * - /. d°T irr(r)- (13>
where the integral denotes the principal value.7 Substitution of (13) into (11) and
decomposition into real and imaginary parts gives

fW = r .. ,:W   (14)
[1 + /„ +'vw

Equations (3), (10), and (14) represent the solution of the given equation.
The author is very indebted to Professor E. C. Titchmarsh whose help and advice

has enabled him to write the present paper.

'The evaluation of this limit represents a particular case of the calculus of the boundary values of a
function along a given path. The expression (13) is immediately obtained from the general formulae
given e.g. by A. Hurwitz and R. Courant, Funktionentheorie, Julius Springer, Berlin 1929, p. 333.


