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changes sign at each zero then for small « (1.5) has at least three periodic solutions as
stated. [4]

Let
fix) = A3x6 — A2x4 + A^2 — A0 — Cx (1.9)

where At and C are constants. Let

Ik = / sin2o- cos 2k <j d<r, k = 0, 1, 2, 3.
Jo

Then Ik > 0 and from (1.7) it follows that

F(p) = A3I3p7 — A2I2p5 -f A1I1p3 — A0I0p.

Let A3I3 = 1, A 2/2 = 14, AJi — 49 and A„I0 = 36. Then all the A,- are positive and

F(p) = p(p2 ~ 1 )(p2 — 4)(p2 — 9).

Thus F(p) vanishes at p = 1, 2, and 3 and changes sign at each of these zeros which
proves that (1.5) has at least three periodic solutions for small e.

Since (1.2) is assured by A3 > 0 in (1.9) it remains only to show that f(x) satisfies
(1.0) and (1.1). Since the A,- are already fixed and since As > 0 and A0 > 0 it follows
easily that if C is large enough then Cx = A3x6 — A2x4 + A^x2 — An has only one
negative root, which is near x = 0 and will be designated by —x[, and only one positive
root, which is large and will be designated by x1 . Clearly f(x) now satisfies (1.0) and
(1.1) and the example is complete.

With polynomials of higher degree the existence of more periodic solutions can be
established. (The argument of Serbin fails in that he does not recognize the restricted
range of the monotonicity of <f>, in Lefschetz's notation, as stated by Lefschetz [1, p. 193]
and to which Serbin refers.)
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THE COMPRESSIBLE FLOW CORRESPONDING TO A LINE DOUBLET*
By J. W. CRAGGS (St. John's College, Cambridge)

Introduction. The use of the hodograph equations for irrotational compressible flow
in two dimensions leads, as noticed by Chaplygin1 and others, to a method of con-
structing compressible flow patterns by reference to similar problems in incompressible
flow. For certain elementary flows, as for example the flow due to a line source, a line

*Received December 11, 1950.
'Chaplygin, On gaseous jets, Ann. Sci. Moscow Imperial University, Math.-Phys. section 21, (1904).
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vortex or a line doublet, the method is particularly simple. Ringleb2 has investigated
these cases, but his diagrams for the doublet do not illustrate what is perhaps one of
the most interesting things about the corresponding compressible flow, the type of limit
lines and singularities which occur. In the present paper special attention is paid to
these points.

The solution in the hodograph plane. For incompressible flow, the complex potential
for a line doublet is given by

w = — 1/z, qe~'6 — dw/dz = I/22,

where q is the magnitude and 6 the inclination to the real axis of the velocity.
Eliminating z we obtain

1/2 —id/2w = —q e ,

whence ^ = q1/2 sin 6/2, (1)

where \p is the stream function. The two branches of (1) correspond to the two half-
planes, on each side of the doublet axis. If only the upper half-plane is considered the
hodograph plane is once covered, but is cut from the origin along 6 = 0 to q — 1.

That solution of the hodograph equations of compressible flow which corresponds
to (1) is

i = ?1/2/M sin 6/2, (2)

where r = q2/Q2

Q being the maximum velocity, corresponding to zero density, and

/(r) = F(a, b; 3/2; r) (3)

where F is a hypergeometric function with

ab = -3/3/8, a + b = (1 - 20)/2,

being the reciprocal of 7 — 1, where 7 is the adiabatic index.
The hypergeometric series (3) converges rapidly and is easily calculated for values

of r < 1. Near r = 1 the expansion in terms of 1 — r may be used.* Thus the flow pattern
in the hodograph plane is found.

Reversion to the physical plane. The coordinates in the physical plane, x, y, are
given by

dx = (d<f>/q) cos 6 — (p0/p)(d\f//q) sin 0
and (4)

dy = (d<t>/q) sin 6 + (pjp)(di/q) cos 6,
where

q(d<t>/dq) = — (p0/p)(l — M2)(d 4>/d0),
(5)

(d<t>/dd) = (p0/p)q(d\f//dq),

2Ringleb, Exact solutions of the differential equations of an adiabatic gas flow. Z. A.M.M. (1940).
*The form of the alternative expansion may be found in any standard text on hypergeometric

functions.
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M being the local Mach number, given by

M2 = 2/3r/(l - r)

and (po/p) the density ratio, given by

(p„/p)2 = (1 - r)-23.

Equations (2), (4) and (5) lead to expressions for the derivatives of x and y with
respect to q and 0. Integration of those expressions then gives

z(p^2/p0) = 2r(d//dr)(cos §0 — | cos §0) + / cos \d
and (6)

y(pqW2/po) = 2"r(d//dr)(sin J0 - § sin f 0) + / sin £0.

The flow in the hodograph plane may be found by plotting streamlines ip — const.
The streamlines in the physical plane are then obtained by substituting corresponding
values of q and 0 in (6).

Singularities of the transformation. Now we investigate the singularities of the trans-
formation. The transformation from the hodograph to the physical plane ceases to be
regular when

J = d(q, d)/d(x, y)

vanishes or becomes infinite.3 The Jacobian reduces to

J = -(p/Po)V/{ff2^ + (1 - M)2^}.

Zeros of J can occur only when q = 0 or \pQ or \f/e —. Now / and df/dr are always
finite so the last two possibilities are eliminated by (2). As q —* 0, / —* 1 and J —♦ 0;
this corresponds to a singular point (the point at infinity) in the flow plane, and a branch
point in the hodograph plane. The singularity is due to the symmetry of the flow about
the x and y axes, which implies the same velocity vector at (x, y) and ( — x, —y). This
has already been dealt with by the cut in the hodograph plane.

The singularity corresponding to J —is of more interest. J —implies q'\pl +
(1 — M2)\pl = 0. This can only be satisfied for supersonic velocity, M > 1. Put a =
M2 = 1, then the condition is

± a\po = 0, (7)

that is

(2rf + §f)qU2 sin J0 ± %ctq1/2f cos |0 = 0,

whence

a cot 10 (4rf/f) + 1. (8)
The singular line in the hodograph plane, given by (7), is a double loop curve touching
the sonic circle, M = 1, at 0 = 0, crossing itself at 0 = 180°, 4t(/'//) + 1 = 0, (r =
.451, approximately) and touching the limit circle, q = Q at 0 = 180°. It is shown in
Fig. 1 together with plots of typical streamlines in the hodograph plane.

•'Cr^gs, The breakdown of the hodograph transformation for compressible flow in two dimensions.
Camb. Phil. Trans. 44, 1948.
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The limit line in the flow plane may now be found by substitution in (6) of (8).
Corresponding to the double point there are zeros of dx/dr and dy/dr taken along the

q = Q
Fig. 1. Hodograph plane.

curve, and each limit line is cusped. It is easily deduced from (2) and (5) that at this
point

= ie = <t>Q = <t>e = = <t>Qa =</>«« = 0

whilst q<t>Qe = (p0/p(aV«9

and q2\l/aQ = a2\pBe ,

thus the ratio d<j>/d\f/ corresponding to given dq/dd at this point is

d<t> _ 2a(p0/p)q(dq/dd)
d\p a (dq/dd)2 + q

But on a limit line qdd/dq — ±a, whence d<j)/d\p = ±a(p0/p). It follows from (4) that

? - ° C0" T Si° ' - T« at » - ISO'.dx a sm ± cos 6

Next, since ipq$ = 0 and , tpee are of the same sign, we see that the point is an ex-
tremum of and hence that lines ip = const, encircle the point and no streamline passes
through it. The singularity is of order two (see ref. 3).

The flow in the physical plane. We may now see the main characteristics of the flow in
the physical plane. First we draw in the limit lines, shown chain dotted in Fig. 2. Each
of the four branches leaving the point B is the join of two sheets of a Riemann surface,
the four sheets of which correspond to the regions a, /3, y, S of Fig. 1. The regions /3
and S are separated by the cut 8 = 0.

The region a corresponds to a sheet covering the whole of the diagram above the
lower pair of limit lines, BP, BQ. Along BQ it joins a sheet (/3) bounded by BQ and BR.
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The sheet y extends from BR to BS and the fourth, (8) bounded by BS and BP, is
symmetrical to the second, and joins the first (a) along BP. A streamline, like that for
\p = 0.92, which is closed in the hodograph plane, passes over the four sheets in order.

\
\

\
 LIMIT LINE \
 STREAMLINE SHEET CX. \  >> OTHER SHEETS \

\
\
i

Fig. 2. Physical plane.

The stream line for \p = 0.5, which is also shown, never reaches the sheet 7 but goes
off, after reflexion at each point where it meets the limit lines, to infinity with speed at
infinity of Q.

Table I. The Limit Line.

T 6 x y
o /

.16 0.00 1.278 .000

.18 58.36 1.032 .684

.20 87.48 .715 .906

.22 107.00 .555 .986

.24 121.00 .422 1.015

.26 132.12 .312 1.020

.28 141.24 .230 1.014

.30 148.48 .167 1.007

.35 162.42 .062 .997

.40 172.36 .014 .959

.45 179.20 .001 .948

.50 184.14 .010 .955

.55 187.42 .041 .975

.60 190.02 .095 1.003

.65 190.42 .184 1.063

.70 191.10 .320 1.170

.75 192.00 .589 1.314

.80 190.44 .965 1.600

.85 189.56 1.859 2.060

.90 188.02 4.280 3.760

.95 183.44 18.3 15.4
1.00 180.00 +«>



1952] J. W. CRAGGS 93

Table II. Streamlines

t = 0.5 ^ = 0.9 i = 0.92
t x y x y x y

.00

.02 .769 1.618

.03 . 92 1.347

.04 .962 1.190

.05 .975 1.087

.10 .961 .860

.12 . 952 . 824

.14 . 945 . 801

.16 .942 .788

.18 . 940 . 783

.20 . 940 . 784

.22 .943 .790

.24 .947 .801 .065 1.017

.26 .954 .816 .105 1.007

.28 .962 .836 .123 1.001

.30 .973 .859 .131 .997 .042 .983

.35 1.009 .938 .124 1.000 .068 .976

.40 1.063 1.051 .096 1.019 .054 .983

.45 1.138 1.207 .049 1.049 .019 .998

.50 1.241 1.424 -.018 1.091 -.031 1.018

.55 1.387 1.731 -.108 1.148 -.904 1.042

.60 1.599 2.181 -.230 1.219 -.163 1.067

.65 1.922 2.822 -.397 1.318 -.234 1.092

.70 2.439 3.956 -.627 1.441 -.126 1.091

.75 3.333 5.986 -.959 1.595

.80 5.09 9.97 -1.426 1.798

.85 9.25 19.59 -1.766 2.022

.90 22.8 51.85

.95 117.4 282.6
1.00

For clarity only ip = 0.5 and = 0.92 are shown in the diagrams.

BOOK REVIEWS

M6canique des milieux continus et deformables. By Maurice Roy. Gauthier-Villars, Paris,
1950. Volume I, xxii + 363 pp., 2800 fr. Volume II, xii + 350 pp., 2300 fr.
M. Roy presents an account of the mechanics of fluids and elastic solids that is based upon the

application of thermodynamic principles to continua. The work covers substantially the content of a
second year course of lectures at l'Ecole Polytechnique, and the object is to give a synthetic account
of the fundamental principles and methods of this mechanics bearing in mind applications to engineering.

Each volume comprises two parts together with extensive appendices; the four parts are entitled
"thermodynamics and mechanics of continuous and deformable media", "theory of elasticity", "equilib-
rium and flow of fluids", and "theory of machines". The principal contents of these parts are described
briefly as follows. Part I. "Definitions and fundamentals of deformations"; finite and infinitesimal
strains, Eulerian and Lagrangian co-ordinates, acceleration, equation of continuity. "Fundamental
thermodynamic principles and equations"; thermodynamic variables, first and second laws of thermo-
dynamics, internal potential, general thermodynamic equation. "General theorems of mechanics";
stability of equilibrium, reciprocal theorems. "Applications to deformable media and elastic solids";


