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A FORMULA FOR AN INTEGRAL OCCURRING IN THE THEORY OF
LINEAR SERVOMECHANISMS AND CONTROL-SYSTEMS*

BY

HANS BUCKNER
Minden, Germany

Introduction. Let t denote the time, p = d/dt the differential operator with respect
to time and

fn(x) = a0x" + a1z"~1 + • • • + an ; a0 ^ 0, n > 1 (1)

a polynomial with real coefficients. If all zeros of /„(a:) have negative real parts, every
solution y(t) of

fn(p)y = 0 (2)

and all derivatives pky tend to zero with increasing t. Moreover the integral

= [ y\t)dt (3)
Jo

exists. The purpose of this paper is to develop a formula for F in terms of squared linear
forms of the initial values

pky{0) = qk ; k = 0, 1, • • • , n - 1. (4)

No further quantities but the coefficients a{ of (1) shall appear in this formula.
Such a formula may be useful for the design of linear servomechanisms and control-

systems, governed by the equation

fn(p)y = z(t). (2')

where z(t) may be considered as an arbitrary disturbance function. For instance, let
z{t) = 1 for t < 0. At t = 0, z(t) may step down to z(t) = 0 for t > 0. The response
y(t) then is a solution of (2), and the integral Y measures, how fast the systems lines
up with the stepping of z. The knowledge of F makes it possible to choose the coefficients
a, of (1) under given conditions in order to minimize F**. Two examples of such a mini-
mization will be given in Sec. 4.

The development of this formula will also yield a new approach to the well known
Hurwitz criterion of stability and to reductions of "stable" operator polynomials in p
to such of a lower degree, including the reduction of Schur [1],

1. Auxiliary theorems and algorithms of reduction. Notation. Let J be the imaginary
axis of the complex plane, J' the set of all points wi, of J with w > 0, J" the set of all
points m of J with co < 0, and Re x the real, Im x the imaginary part of x.

Definitions. Let f(x) = b0xm + b^x'"'1 + • • • + bm a polynomial with real or complex
coefficients. We call m the proper degree of f(x), if b0 0. We define now
1) F{x) = b0xm + bm as the "simplification" of f(x), if f(x) has the proper degree m,

*Received August 3, 1951.
**Minimization of Y has already been investigated by P. Hazebroek and B. L. van der Waerden [2]

who also gave a formula expressing Y as a symmetric function of the zeros of (1) for special systems (4).
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2) g{x) = bm + bm-2x2 + • • • as the even and h{x) — fix) — g(x) as the odd component
of fix),

3) fix) as a "Hurwitz-polynomial", if all zeros of f{x) are in the left-hand half-plane
Re x < 0 (the case f (x) = const. 5^0 to be included),

4) f(x) as definite (semidefinite) on a given set M of points of the complex plane, if a
suitable constant c ^ 0 can be found, so that cf (x) > 0 (>0) on M (for instance,
xm is definite on J'), c to be normalized by | c | = 1.
Lemma 1. Let p{x) and q[x) be two polynomials. The linear combination rix, t) =

tp(x) + (1 — ()q(x) shall have proper degree m for all values ()<£<]. We further
assume r(x, t) ^ 0 on J for all these values of t. Then p(x) and q{x) have the same
number of zeros for Re x > 0 and for Re x < 0.

Proof. No zero of r{x, t) can pass J or can go to infinity, when t is running from 0
to 1. Hence the number of zeros for Re x > 0 remains constant. The same holds for
Re x < 0.

Lemma 2. Let f(x) — b0xm + • ■ ■ + bm be a polynomial with real coefficients bk .
The proper degree shall be to > 1; f(x) and its simplification Fix) shall not vanish on
J. Then fix) and Fix) have the same number of zeros for Re x > 0 and for Re x < 0,
if at least one of the following conditions is satisfied:
a) the even component g(x) of f(x) is semidefinite on J';
b) to is odd, and the odd component h(x) of f(x) is semidefinite on J';
c) to is even, and the odd component h(x) of f(x) is definite on J'.

Proof. We set r{x, t) = tf{x) + (1 — t)F{x) = b0xm + tb1xm~1 + • • • -f tbm_^ + bm .
The proper degree of r(x, t) is to for all values of t. We shall prove that r{x, t) ^ Oon
J for 0 < t < 1. Application of the first lemma then completes the proof.

From the assumptions it follows that r(x, 0) ^0on J and r(x, 1) ^ 0on/; further-
more r(0, t) = bm 9^ 0. It is therefore sufficient to prove r{x, t) ^ 0 on J' or J" for
0 < t < 1. We denote by G(x) the even and by II(x) the odd component of F(x). G(x)
is either the simplification of g(x) or equal to g(0) = bm ; H(x) is either the simplification
of h{x) or equal to h(0) = 0.

If any polynomial s(x) is semidefinite on J', we have cs(x) > 0 on ,/' with a suitable
constant c (j c j = 1). Considering extremely small and extremely great values of \ x\,
we find cS(x) > 0 on ./' with the same constant c for the simplification S(x) of s(x).
With this in mind, we distinguish the following three cases according to the conditions
a, b, c of the lemma.
a) g{x) is semidefinite on J'. This leads to cg(x) > 0 and to cG(x) > 0 on J'. We have

either G{x) = bm or G(x) = Fix), and in both cases G{x) ^ 0 on J. Therefore,

I r(x> 0 I > I Rer(a:, t) \ = c.tg(x) + c.(l — t)G(x) > (1 — t)cG{x) > 0 on J'.

b) to odd, h{x) semidefinite on J'. We have Hix) — b0xm ^ 0 on J' and a suitable
constant c, making ch(x) > 0 and cllix) > 0 on J'. Hence for 0 < t < 1 on J'

I r(x, 0 I > I Im r(xJ 0 I = c.th(x) -(- c.(l — t)H(x) > c(l — t)H(x) > 0.

c) to even, h(x) definite on J'. We find | r(x, t) \ > 11 h(x) \ > 0 on J' for 0 < t < 1.
Thus, r(x, f) ^ 0 on J.

Lemma 3. Let p(x) and q(x) be any two polynomials with real coefficients, p having
proper degree m and q having proper degree to' < to. The polynomial f(x) = p(x)q(~x)
and its simplification F(x) shall not vanish on J; / (x) and F(x) shall have the same
number of zeros for Re x > 0 and for Re x < 0. From this it follows that
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a) if p{x) is a Hurwitz-polynomial, q{x) is also one with to' = to — 1,
b) if q(x) is a Hurwitz-polynomial, if furthermore m = m! + 1, and if all coefficients

of p(x) are positive, then 'p(x) is also a Hurwitz-polynomial.
Proof. The number of zeros of F{x) in the half-plane Re x < 0 may be n, the number

of zeros in Re x > 0 may be n'. All zeros of F(x) form a regular polygon for n + n' > 3,
and no zero can appear on J. Hence | n — n' | < 1. Should 'p(x) be a Hurwitz poly-
nomial, fix) and F(x) have at least to zeros in Rex < 0 and not more than m' < m — 1
zeros in Re x > 0. Therefore n = m and n' = m' = m — 1. The to — 1 zeros of fix)
in Re x > 0 are those of q( — x). This means, that q(x) is a Hurwitz polynomial. Should
the conditions of b) be satisfied, then at least to — 1 zeros of F{x) and consequently
of f(x) appear in Re x < 0. Therefore p(x) has m — 1 zeros in Re x < 0. Should the
last zero of p(x) be situated in Re x > 0, it must necessarily be real, i.e. positive. But
no such zero can exist, since p(x) is assumed to have positive coefficients. This completes
the proof of the lemma.

Note. The condition, that all coefficients of p(x) are positive is—apart from a constant
factor—a necessary condition for p(x) to be a Hurwitz polynomial. It is well known and
it can easily be proved by splitting p(x) into root factors. No coefficient can vanish
without reducing the degree of the polynomial.

Algorithms can be based on Lemmas 2 and 3 in order to reduce a Hurwitz polynomial
to such of a lower degree. It may be worthwhile to explain, how the well-known reduction
of Schur (see [1]) can be obtained in this way.

Schur's algorithm of reduction. We consider the polynomial (1) with real coefficients,
but we do not assume that it is a Hurwitz polynomial. We denote by g+ the even and
by h+ the odd component of fn(x). With Schur we introduce

/„_ lO) = (2a! — a0x)[g+(x) + h*(x)] + (— l)na0x[g+(x) — h+(x)] (5)

with lower degree than n. The odd component of the polynomial f(x) = fn(x)f„^l(—x) is

h(x) = —2a0xh+2(x) for even n, h(x) = 2a0xg+2(x) for odd n. (6)

This component is obviously semidefinite on J' and on J". It can easily be seen, that
fn(x) = 0 on J in any point x leads to fn-i(x) = 0 for the same point. Vice versa, ajjx) =
0 is a consequence of f„~i(x) = 0 in any point a; of J. We now assume that

a, ^ 0. (7)

This is necessary and sufficient for /„_i to have the proper degree n — 1. The polynomial
fix) then has the proper degree 2n — 1. If either fn or /„_i is a Hurwitz polynomial, /
cannot vanish on J. Also F(x), the simplification of /, cannot vanish on J. Hence Lemma
2 is applicable to f and F and the Lemma 3 to fn and /n_x . Thus, if fn is a Hurwitz
polynomial, /„_! is also one; if /„_! is a Hurwitz polynomial and if /„ has positive co-
efficients, then /„ is a Hurwitz polynomial too.

Another algorithm. Assume that f„(x) and /»(—x) do not have common zeros. Then
two polynomials r(x) and t(x) with real coefficients and with no higher degree than
n — 1 exist, satisfying

fn{x)r(x) + fn(-x)t(x) = 2. (8)

From this it follows that

/„(x)/n_,(-a;) + fn(—x)fn-i(x) = 2 with 2fn-1(x) = r{-x) + t{x), (9)
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the degree of /„_! being at most n — 1. Any other polynomial pix) of any degree, which
satisfies (9) instead of /„_t can be written as

p{x) = /„-!<» + s(x)fn(x), (10)

with a suitable odd polynomial s(x) = — s( — x). Hence i is the only polynomial
satisfying (9) with no higher degree than n — 1. From (9) it follows that

g(x) = 1 (11)

for the even component of the product f(x) = fjx)fn-1( — x); g{x) is definite on J' and
on J", it is even definite on J. The product /(x) cannot vanish on ,/. Also its simplifica-
tion F(x) cannot vanish on J, since the degree of Fix) is odd and F(0) = 1. Therefore
f{x) and Fix) have the same number of zeros for Re x > 0 and for Re x < 0 according
to Lemma 2. Lemma 3 is applicable to /„ and i . Thus, if /„ is a Hurwitz polynomial,

is also one with proper degree n — 1. If /„_j with proper degree n — 1 is a Hurwitz
polynomial and if /„ has positive coefficients, /„ is a Hurwitz polynomial too, and this
is a consequence of (9).

2. Details concerning the second algorithm of reduction. The second algorithm will
be useful for the development of the formula announced. Some necessary details will
therefore be developed. We assume f„(x) = a0xn + ■ • • + an to be a Hurwitz polynomial
of proper degree n with real coefficients. As already stated, the polynomial (x)
defined by (9) is also a Hurwitz polynomial with real coefficients and with proper degree
Ti—l. The method leading from /„ to /„_i can now be applied to /„_i and so on. Thus
we obtain a sequence of Hurwitz polynomials

fn , fn-1 , fn-2 , ' ' ' , fl , fo , (12)
with f0 as a constant; fk has the proper degree k and real coefficients; any two adjacent
polynomials fk , fk_x satisfy

f k(x)f k-\i~x) + fk( — x)fk-!ix) = 2. (13)

It means no loss of generality to assume

/„(0) = an = 1; (14)

(13) and (14) then lead to
/j,(0) = 1 for A; = 0, 1, • • • , n — 1. (15)

This in turn causes positive coefficients for all polynomials fk (see Sec. 1, Note). We
increase all subscripts in (13) by 1 and subtract the new equation from (13); hence
p(x)fk(~x) + pi~x)fk(x) = 0 with p(x) = fk+1(x) - fk-i(x); fk(x) and fk(-x) have
no common zeros. Therefore,

fk+i(x) - fk-i(x) = ck+1 x-fk{x) for k = 1, 2, • • • , n - 1 (16)

with a suitable constant
ck+1 > 0. (16')

In addition to (16), we write
fiix) = 1 + c^; Ci > 0. (16")

Regarding the positive constants Cj , c2 , • • • , c„ as given, we can solve the system (16)
with regard to f2, ■ • ■ , /» • We find:
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1 + CXX -1 0 0 • • 0 0

1 c2x — 1 0 • • 0 0

0 1 c3x — 1 • • 0 0
fk{x) =

0 0 0 0 1 ckx

k = 2,3 (17)

This is a representation of all Hurwitz polynomials of proper degree k with /*(0) = 1.
Vice versa all determinants (17) with coefficients cf > 0 give Hurwitz polynomials.
Another representation may be given by means of the determinants

CiX — 1 0 • • 0 0

1 c2x — 1 • • 0 0

0 1 c3x • • 0 0
= F(z; cx , c2 , • • • ck). (18)

0 0 0 • • 1 ckx

We can write then

fk(x) = F(x; Ci , c2 , ■■■ , ck) + F(x; c2 , c3 , ■■■ , ck), (17')

the right-hand-side showing the even and the odd component of fk . The functions (18)
have imaginary zeros in x or real zeros in ix, which can easily be recognized as the eigen-
values of a Hermitian matrix. The result about the zeros of the components of a Hurwitz
polynomial with real coefficients is well known and has been found by E. J. Routh. So
far this represents a minor application of (18).

We are now going to develop another formula for fk where only the coefficients of
the given polynomial /„ appear. For this purpose we introduce the column-vector

f \

2 J+ 2

Cli-2j H

a</ = , ak = 0 for k > n and for k < 0;

(a,-
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with j components, the matrices

= (Ct2fc— 1 , fc ) 024-2.4 ) ' ' ' k == 1,2, • • • ,71,

the so-called Hurwitz determinants

' D0 = sign a0 = 1, Dk = || &k || for k = 1, 2, • • • , n, (19)

and the column-vector

bnu

Uk-l.kj

of the coefficients of the polynomial

fk{-x) = bokxk + blkxk~1 + • • • + bk.ltlx + 1.

We then consider the polynomials

fn(x)fk(-x) — (—1 )n~kfn( — x)fk(x) = Wn_k^(x)) k = 0, 1, ••• ,n (20)

with the two significant special cases

w_i(x) = 0, w0(x) = 2. (20')

From (16) and (20) follows for n — k > 1

= ci+1a:wn_i_1 + , (21)

and we derive from,(16'), (20') and (21) that wn-k(x) has the proper degree n — lc.
This means: the product f„(x)fk( — x) does not contain the powers xn+h~\ xn+k~3, ■ ■ • ,
x"~k+1. This is expressed by

t&k — Q-k-l.k ■ (22)

There is only one polynomial /„_t of degree n — 1 according to (9). Hence there is only
one solution /3„_i of (22) for k — n — 1, and this leads to Dn_l 0. Let Dk+1 ^ 0; con-
sequently the matrix &k+1 is of rank k + 1, while the matrix (S)k , <xk-i,k) consisting
of all rows but the last of §4+1 is of rank k. This very matrix appears in (22), so only
one solution of (22) for ft exists, and therefore Dk ^ 0. Hence

Dk 0; k = 1, 2, • • • , n - 1. (23)

All systems (22) have only one solution ft , and this belongs to

x" -x"-1 ■■ (-1)"
fk(x) D a0 xk + • • ■ + 1. (24)

G2fr-1,A: &2k-2,k ' ' Gft-l.fc

The proof is clear. The coefficients of fk are positive. We have Dx = Oj > 0, aaDk^J)ll >
0, Dn — anDn-i and thus,

Di >0 for i = 1, 2, • • • , n. (25)
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The coefficients c; in (16) are the quotients of the highest-power-terms of f{ and /<_i .
Therefore

Ci = a0ai f Ck ~ Dk—iDk • T)k-2 for k = 2, 3, • • • , 11 - (26)

The inequalities (25) form the well known Hurwitz criterion of stability.
3. The formula for Y. Let

m

P(u, v) = X ailcu'vk (27)
i , k = 0

be a polynomial of two variables u and v. Let yd) and z{t) be two functions with con-
tinuous derivatives ply, phz up to the order i,k = to -f- 1. We then set

m

P*(y,z)= I] aikpy-pkz. (28)
i,k = 0

We introduce Q(u, v) = (u + v)P(u, v). Obviously,

I Q*(y, z) dt = f pP*(2/, z) = P*(?/, z) (29)
''a "a a

We consider the special polynomials

Qk(u, v) = /t(w)/i_i(y) + fk(v)fk^(u) - 2; k = 1, 2, ■ ■ ■ , n. (30)
From (16) it follows that

Qk(u, v) = (« + -(- Qk-i(u, v). (31)

Therefore,

Q„(m, w) = (w + v) X c*/*-1 (")/*-i(v)- (32)
&-1

We apply (29) to (32) with y and z as solutions of (2), i.e., f„(p)y = 0 and /„(p)z = 0.
Hence

[ y(t)z(t) dt = - I' Q*n(y, z) dt = jt, ckft-Mft-i(z)
J a Ja k= 1

(33)

with ft-i(y) = fk-i(p)y and ft-i(z) = ft-^z. Setting y = 2 and a = 0, b = °° we find
the announced formula

2Y = 2 f y\t) dt = X>*(/Mz/)o)2. (34)
J 0 k = l

We express ck and /t_, according to (26) and (24). We obtain

9* -?*-i •• (-l)V
2F — a0a11ql + ^

&2A:-lt& tt2A:-2,/k * *

(35)

with the initial values qk as explained by (4). In this formula, squared linear forms of
the qk appear together with the coefficients a{ of the given equation. Formula (35) has
already a form which makes it independent of the restriction an = 1. It holds quite
generally.
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In the special case q0 = 1, qi = q2 = • • • = i = 0 we find
n

2 Y = Y. ck . (36)
k = 1

This sum can be easily computed from (16). Addition of all formulae (16) gives

fn + Jn —1 — 2 = —2 + /o + /l + ^ (/< + ! — 1) = X Ci + 1fi
i-1 i-0

or Ci = coefficient of x in (/„ + 1).
Therefore

25 = a„-i<ln -f- Dn "| Ct2n—3 ,n—1^2n—4,n —1 ,n-1 Orc-2 , n-1 • (36')

This formula too is not restricted to a„ = 1.
4. Two applications. 1) We set a0 = an = 1, which is no essential restriction. All

other coefficients of /„ may be variable in order to minimize F according to (36). This
means, that the sum of all coefficients c, is to be minimized under the restriction cxc2 • • •
c„ = 1. An elementary calculation gives Min 2 F = n for Cj = c2 = • • • = c„ = 1 with

/„(*) = x" + (w x + (n 2 2)xn- + ■■■

(37)

+(VW("rV+--
This formula can be proved by induction on n.

(2) There are servomechanisms with an arbitrary input djt) and with a servo con-
trolled output 60(t). The control depends on

e(0 = 0O(0 - 6<{t) (38)
and shall make | e | as small as possible. According to the definitions given in [2], e can
be called the regulated variable and 60 the regulating flow. Let the servocontrol be of
the proportional plus integral type, i.e.

a060 + Mo = — a2t — / a3 t dt (39)
Jo

with constants a* > 0 for i — 0, 1, 2, 3. Combination of (38) and (39) gives

a01 -\- -|- a2e 4" = —cto^i — ciidi . (40)

Due to the integral in (39), e(t) tends to zero with increasing t if the right-hand-side
vanishes identically and if

Z)2 = axa2 — a0a3 > 0. (41)

Now we consider the case

0i = 0 for t < 0; di = Ct for t > 0. (42)

Then t{t) is a solution of the equation (40) made homogeneous. If the servomechanism
is to start from rest at t = 0, the initial values are

e(0) = qn = q<> = 0; «(0) = q, = -C; V(0) = q2 = 0. (43)
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Application of (35) leads to

2Y — C2 a' + fl3a°. (44)
a3D,

It is obvious that Y becomes smaller with increasing a2 . Therefore a2 should be made
as large as possible. For practical reasons (saturation and overcontrol of amplifiers or
the like) an upper bound for a2 is given. With this in mind we minimize 2 Y for a given
a2 by variation of a3 . Setting b{ = a Ja0 we find

Min 2Y = C2 2K + 62 + *bAb' + b2)V2, (45)
ZO1O2

b3 = b*m + b2)1/2 - M. (46)

This gives the best design with respect to the important case (42).
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