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NOTE ON AERODYNAMIC HEATING
WITH A VARIABLE SURFACE TEMPERATURE*

By A. E. BRYSON (Hughes Aircraft Company)

Emmons [1], has considered the problem of an insulated flat plate of infinite extent
started impulsively from rest in a viscous, incompressible fluid. One of the interesting
results of his analysis was a simple expression for the temperature recovery factor at
the plate surface. Another interesting result can be obtained from the same problem
by considering, instead of an insulated plate, a plate with a surface temperature that
is a given function of time.

As Emmons has shown, letting n, the viscosity coefficient of the fluid, p, the fluid
density, and k, the thermal conductivity of the fluid, be constant, it follows from the
equations of motion and the boundary conditions that the pressure is constant and the
velocity normal to the plate is zero. The momentum equations reduce to:

du d2u
di = vW' ()

where u is the velocity component of the fluid parallel to the surface of the plate, t is
the time, y is the distance perpendicular to the plate surface, and v = n/p. The energy
equation becomes:

„ dT , d2T !du\2 (9)
pCp (2)

where T is the fluid temperature and Cp is the fluid specific heat per unit mass at con-
stant pressure. These equations are to be solved with the following boundary and initial
conditions:

u{0, t) = 0, u(y, 0) = U, (3)

r(0, t) = T.{t), T(y, 0) = T„ , (4)

where U is the free stream velocity, Ta the free stream temperature, and Ts the plate
surface temperature.

The problem defined by Eqs. (1) and (3) for the velocity diffusion is well-known,
the solution being

u = Uerf\y/2(yt)1/2]. (5)

Substituting (5) into (2), we have

exp (-yV2»0
dt dy2 irCp t '

where a = k/pCp. The solution to (6) with the boundary and initial conditions (4) is
obtained by the method of heat sources and sinks and the result is:
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T — Ta = 2«-1/2 f [T.(t - y2/±ap2) - r.] exp (-/32)
Jy/2(.at) */»

(v - x)21 r (v + x)21
+ _^L f [' exP (~XV2»r) exp L 4a« - T)J exp L 4a« - r)J
+ TrCp J0 J0 r [Aair{t - r)]1/2

(7)

The heat flow through a unit surface of the flat plate, Q, is given by the derivative
of (7) evaluated at the surface of the plate:

n udTQ — ti-dy = -k{iratyin[T.{Q>) - T„] - k(ra)~1/2 f (t - t)~1/2T:(t) dr
(8)

+ k(irat)~1/2r(a) U2/2Cp,

where the recovery factor, r(a), is given by:

4/ a/2 yfa1 ihffl ; °<2 ()r(a) = ;VmT-^721/' ) (9)
(log [(<r/2)1/2 + (a/2 - I)"*]; a > 2

and a = v/a = Prandtl number. Equation (8) can be written more compactly in the
form of a Stieltjes integral as follows:

Q = —k(iraty1/2 f (1 - r/r,/2 d[T.(r) - T.], (10)
Jo

where

T. = T. +r(a)U2/2Cp. (11)

The surface-temperature variation to give a prescribed heat flow variation can be
obtained by inverting the Abel integral Eq. (10); this gives

T, - T,(t) = (a/7r)1/2r' ['(t - t)-1/2Q(t) dr. (12)
Jo

For a constant rate of heat flow this reduces to

Te - T,{t) = 2Qk~\at/w)1/2. (12a)

Emmons has already given this latter solution for constant heat flow to the plate [1],
By replacing t by x/U in (1) and (2), we have the linearized boundary-layer equations

for steady, viscous, incompressible flow past a flat plate (sometimes called the Rayleigh
equations). The boundary conditions (3) and (4) become

u(0, x) = 0, u(y, 0) = U, (13)

no, x) = T.ix), T(y, 0) = T„ (14)

These imply a semi-infinite flat plate with an arbitrary surface temperature T,(x),
where x is the distance from the leading edge in the direction of flow. Therefore, an ap-
proximation to the heat flow to a semi-infinite flat plate in a steady flow of velocity U,
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and with an arbitrary surface-temperature distribution Ts(x), can be obtained by re-
placing thy x/U in Eq. (10); this gives

Q = -7r,/2fc(£WV/2 f (1 - %/x)~U2 d[T.(£) - T.] (15)
Jo

which, for constant surface temperature reduces to the familiar form

Q = ir-ink{U/vx)u\u\Te - T,). (15a)

Lighthill [2] has given an expression for heat transfer to an arbitrary two-dimensional
surface in terms of the skin friction and temperature along the surface, by using the
Fage and Falkner linear approximation of the boundary-layer profile and neglecting the
viscous dissipation terms in the energy equation. For the case of the flat plate, his result is:

Q = -0.339k(U/vx)1/2a1/3 f [1 - (£/x)3/T1/3 d[T&) - Tm\. (16)
Jo

He argued that the effect of viscous dissipation is taken care of by replacing in the
above expression by + <r%U2/2Cp, the boundary-layer equilibrium temperature. If,
following the suggestion of Lewis and Carrier [3], we replace U by 0.35(7 to approximate
a mean convective velocity in the boundary layer the constant multipliers of Eqs. (15)
and (16) are nearly equal.

The differential equations used here and by Emmons in [1] apply to a fictitious fluid
of constant pressure and density, but variable temperature. The equations are really
of interest only because the compressible fluid boundary layer equations can be reduced
to their form by the Von Mises transformation and the assumptions that p. is proportional
to the temperature and a is constant (see for example ref. [4]). If enthalpy is used as
the independent variable instead of temperature, no additional assumption need be
made on the variation of the specific heat with temperature. Then the only change in
the previous differential equations is to replace y by 17 where

p V

77 = f — dy
J 0 P°°

The expressions for heat transfer rate are unchanged, although as they stand CP must
be assumed constant.
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