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THE ELASTIC AXES OF A ONE-MASS ELASTICALLY SUPPORTED SYSTEM*
By J. J. SLADE, JR.

When an elastically supported rigid, body is subjected to the action of a rectilinear
sinusoidal force, the resulting steady motion generally consists of rectilinear and torsional
oscillations with frequency equal to that of the exciting force. It is desired to determine
the location of the exciting force so that the torsional oscillations are suppressed or, at
least, so that the amplitude of these oscillations is reduced to a minimum. The problem
arises, for example, in connection with unbalanced machines on elastic foundations, as
well as in investigations of the dynamic characteristics of elastically supported rigid
assemblies by means of induced vibrations.

The two-dimensional problem has been considered under simplifying conditions.1
The three-mass mechanical oscillator2 that produces a force the axis of which may be
made to coincide with any line in a fixed plane, when the oscillator is in a fixed position,
presents problems that require an extension of existing theory. The present investigation
deals with the general case.

We consider a rigid body of mass m that can move freely under general linear elastic
constraints with linear damping. Let r be the displacement of its center of gravity with
respect to its position in static equilibrium. Since only small oscillations are considered,
elastic and damping reactions may be taken to be fixed to a moving frame with origin
at r.

Let $ -f- e$0 and ^ + e^0 be dual dyadics such that — (<I> + e<3?0) •r is the motor3 of
the elastic suspension and — (^ + e%0) ■r> that of the damping system, due to a rectilinear
displacement, the prime denoting differentiation with respect to time.

Finally let / be the exciter force and p a point on its line of action. It should be noted
that in all cases considered the exciter is rigidly connected to, and forms part of the system.
The exciter force is strictly fixed in the moving frame.

The motion of the center of gravity of the body is governed by the equation

mr" + ty-r' + $-r = /. (1)

There is also the moment

c = V X / - (3vr + *o-r') (2)

that tends to produce torsional oscillations.
If the angular frequency of the exciter force is w, we may write

where

/, r, c = (F, R, Cyal

( — mJ21 + twMr + <£)■/? = F (3)

*Received Oct. 18, 1951.
•See, for example, E. Rausch, Machinenfundamente und andere dynamische Bauaufgaben, Ch. Ill,

Y.D.I., Berlin, 1936.
2R. K. Bernhard, Study on mechanical oscillators, Proc. Am. Soe. Test. Materials 29, 1016-1036 (1949).
3L. Brand, Vector and tensor analysis, Ch. II, J. Wiley & Sons, New York, 1947.
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and
C = p X F — (<t>„ + iui^0) ■( — mo? I + iorfr + <t>) 1 F

= p x f + (r + ik)-F.
(4)

Our problem is to determine under what conditions, if any, we can make C = 0
with F 9^ 0.

An axis with which the line vector F + tp X F must coincide to satisfy these condi-
tions fully is here called an elastic axis4 of the system. An axis of fixed direction with which
the line vector must coincide to make | C \ ^ 0a minimum will be called a quasi-elastic
axis.

Suppose first that the system is conservative, so that + e^0 = 0. If oscillations about
the axis of the free vector a are suppressed, then a-C = 0; or, since in the conservative
case A = 0,

a-p X F + a-Y-F = 0. (5)

Now, the left hand member of this equation is the moment of the fixed motor
a + ta- F about the axis F + tp X F Whence:

Oscillations about an axis a are suppressed when the line vector F + ep X F coincides
with a line of the null system of the motor a + ta- T.

Let ex , e2 , e3 be unit vectors in the directions of the principal axes of the elastic
suspension. In this presentation the diagonal elements of T are zero and ek-ek-T = 0,
so that the motor ek + tek ■ T is a line vector. We therefore have the following results.

1. Rotational oscillations about a principal axis are suppressed when the line of
action of the exciter force coincides with a line of the special linear line complex the axis
of which is ek + tek-T.

2. Rotational oscillations about two principal axes are simultaneously suppressed
when the exciter force coincides with a line of the linear congruence, the directrices of
which are e, + • T, j = k, I.

3. The elastic axes of the system are the lines of the regulus the directrices of which
are ek + eek-T, k = 1, 2, 3.

When the system is not conservative, the following equation must be added to (5):

a-A-F = 0. (6)

4. Oscillations about a are suppressed when the force coincides with a line of the
null system of a + ta ■ T that is perpendicular to the fixed couple vector a ■ A.

Assuming that the principal axes of ^I' coincide with those of <£, as they generally do
in practical cases, we may further state.

1. Rotational oscillations about a principal axis ek are suppressed when F + ep X F
is a line of the plane through ek + tek-T perpendicular to ek ■ A.

2. When F + tp X F is the line of intersection of two such planes oscillations are
simultaneously suppressed about the corresponding two principal axes.

In general the non-conservative system possesses no elastic axes. Since r and A are
constants, when co is fixed, we see from Equation 4) that, if F is held fixed, | C | is a
minimum when p is so determined that

  pXF+r-F = 0. (7)
4Rausch, loc. cit., uses the terms elastiche Hauptachse and elasticher Mittelpunkt.
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This leads to the following result: The quasi-elastic axes of the system are the lines
of the regulus the directrices of which are ek + tek - T, k = 1, 2, 3.

The traces of the directrices ek + eek-T on the principal planes have been called
elastic centers. The locus of an elastic center starts, with to = 0, at a point that depends
on the parameters of the elastic suspension and ends at the center of gravity (a> = «).

In the conservative case this locus is the outside section of a hyperbola, the inside
section corresponding to «2 < 0. The locus is a 4th degree algebraic curve in the non-
conservative case. The reduced system in which one reaction goes through the center of
gravity and the other two lie in a plane through this center has been considered in detail.5

HEAVY DISK SUPPORTED BY CONCENTRATED FORCES*
By YI-YUAN YU (Washington University, St. Louis, Mo.)

Muschelisvili solved the problem of a two-dimensional light disk subjected to an
arbitrary number of concentrated forces by means of his method of complex variable
[1, 273-274].** When the weight of the disk has to be taken into consideration, the prob-
lem may still be solved in a similar way. Muscheli§vili's notations will be followed
throughout this paper, and only additional ones will be defined as they first occur.

In plane problems including body forces due to gravity, the stress function U may
still satisfy the biharmonic equation if it is defined by the following equations:

d2u v d2U _ d2U _
17 - T» ~ Vl ' dy2 - T" ~ Kl ' "to dy - r" (1)

in which Vx is the body force potential due to gravity and is equal to wy when gravity
acts in the negative ^-direction [3], w being the specific weight of the material of the
body. Hence, the function U may be expressed in terms of two analytic functions as
shown by Muschelisvili [2, 284].

The boundary conditions

dy dx, _ dy dx
Tx = T" ds ~ Tiu ds' Ty ~ Tx" ds ~ Tyy ds

however, may be shown to lead to some different result. When stress components given
by Eqs. (1) are substituted into these conditions and computations carried out in the
same manner as given by Muschelisvili [2, 301-302], the following result is obtained:

<Pi (z) + zvi(z) + (z) = i / (tx + tY„) ds - J Fj dz

If we define

fi + if2 = i J (tx + iru) ds - J V1 dz (2)

5R. K. Bernhard and J. J. Slade, Jr., On the elastic center of one-mass plane oscillatory systems (un-
published). Dynamics Laboratory, Bureau of Engineering Research, Rutgers University.
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