
280 NOTES [Vol. X, No. 3

This leads to the following result: The quasi-elastic axes of the system are the lines
of the regulus the directrices of which are ek + eek-T, Jc = 1, 2, 3.

The traces of the directrices ek + eek ■ Y on the principal planes have been called
elastic centers. The locus of an elastic center starts, with co = 0, at a point that depends
on the parameters of the elastic suspension and ends at the center of gravity (co = <»).

In the conservative case this locus is the outside section of a hyperbola, the inside
section corresponding to co2 < 0. The locus is a 4th degree algebraic curve in the non-
conservative case. The reduced system in which one reaction goes through the center of
gravity and the other two lie in a plane through this center has been considered in detail.5

HEAVY DISK SUPPORTED BY CONCENTRATED FORCES*
By YI-YUAN YU (Washington University, St. Louis, Mo.)

Muschelisvili solved the problem of a two-dimensional light disk subjected to an
arbitrary number of concentrated forces by means of his method of complex variable
[1, 273-274].** When the weight of the disk has to be taken into consideration, the prob-
lem may still be solved in a similar way. Muschelisvili's notations will be followed
throughout this paper, and only additional ones will be defined as they first occur.

In plane problems including body forces due to gravity, the stress function U may
still satisfy the biharmonic equation if it is defined by the following equations:

d2U d*U _ d2U _
- T» ~ 1 1 ' dy2 ~ T- ~ Kl ' "to dy - T- (1)

in which Vx is the body force potential due to gravity and is equal to wy when gravity
acts in the negative ^-direction [3], w being the specific weight of the material of the
body. Hence, the function U may be expressed in terms of two analytic functions as
shown by Muschelisvili [2, 284].

The boundary conditions

dy dx, _ dy dx
T* = Txxds ~ Txy ds' T" ~ Txyds~ T"u ds

however, may be shown to lead to some different result. When stress components given
by Eqs. (1) are substituted into these conditions and computations carried out in the
same manner as given by Muschelisvili [2, 301-302], the following result is obtained:

<p,(z) + z<pi(z) + >Ai(z) = i / (tx + irv) ds - J Vi dz

If we define

/i + ih = i / (tx + irv) ds - J V, dz (2)
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then the boundary equation for the first fundamental boundary value problem is

<Pi(z) + zv ((z) + iAi(i) = fx + if 2

which holds true on the boundary C of the body in the original z-plane. When C is
mapped into the unit circle y in the f-plane by means of the function z = o>(f), the
boundary equation becomes

<pW) + r~~~<p'(<r) + = fi + if 2 (on 7) (3)
oj (cr)

Thus, except with a different definition of /x + if? , this equation assumes the same
form as the one for zero body forces [2, 294],

Modified expressions for stress and displacement components may similarly be
derived. Only stress components in curvilinear coordinates are given here:

tpp + TSe = 2[<f>(f) + 3>(f)] + 2F(f) I
Tee — Tpp + 2iT„g = —~=" [co(f)$'(f) +

P«'(D '

(4)

in which
Vtt) = VMt)) = v1(z)

By comparing with Muschelisvili's original formulas [2, 312], it can be seen that 2F(f)
is the only additional term due to body forces.

The problem here concerned is that of a heavy disk having radius R supported by
an arbitrary number of, say n, concentrated forces (X1 , Fi), (X2 , F2), • • • , (X„ , Fn)
at points on its boundary corresponding to ^ , ir2, • • • , <in respectively on the unit circle
as shown in the figure. Obviously the supporting forces must satisfy the following con-
ditions:

E X„ = 0, £ F» = wtR2
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Since the boundary of the disk is free from stress everywhere except at the supporting
points, expression (2) becomes

dzfi + if 2 = - J Vi dz = | iw J (z — z)

For a circle of radius R, we have

2 = w(f) = R$

hence,

fi + if 2 = ^iw J R2(a — a) da = | iwR2(^ — log <j

The boundary equation (3) now takes the form

<p(p) + <r<p'{a) + *(o) = | iwR2{~ — log a (on y) (5)

By modifying those obtained by Muschelisvili for the problem of a light disk [1, 274],
the two analytic functions for the present problem can be written down as

2-7T f=i 1 |
<p(t) = E (xt + iYk) log (<7* - f) + /(f)

(6)
m = ^ £ (x* - iTj.) log (cr, - f) - £ £ (Xk^iY^~ + *°(r)j

in which <p°(f) and tA°(f) are functions analytic in the entire region inside y and have
the forms [1, 272]

<P°(f) = aif + (a2 + if}2) f2 + ■ • •

^°(f) = ao + ifio + («! + + («2 + ifi'2) f2 + • • •

The other terms in p(f) and t^(f) account for the singularities in the solution due to con-
centrated forces and therefore have the same forms as those for a light disk.

Substituting expressions (6) into Eq. (5) now yields, after simplification,

<p\a) + cr2 — ^ (Xk — iYk)<rko _ (7)

from which /(f) and ^°(f) can be determined. Following the established procedure of
the method, we formulate an integral equation by multiplying Eq. (7) through by
l/27rz da/ (<r — f) and integrating around y. The integrals in the equation thus obtained
can be evaluated by means of the theorems developed by Muschelisvili [1, 269], The
result gives

7*1 /) 7?^ 1 "
At) + «.t + 2(a2 - t&) +<*'0- H3'o = t2 ~ ^ £ (X> - iYk)akf

in which the constant terms may be neglected. The constant a, is determined by differ-
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entiating the rest of the equation with respect to f once and setting f equal to zero.
We have finally

*°(f) = r2 - £ X) (Xk - iYk)<rkf (8)

Substituting this back into Eq. (7) and formulating the conjugate of the result, we obtain

= -I iwR2 + j- E \{Xk - iYk)crk - (Xk + iYk)ak]a
l 47r k=i

Multiplying this through by l/2« da/(a — f) and integrating around y,

in(X) = ~\iwR2 (9)

Thus the problem is completely solved. The solution consists of ^(f) and ip(t) as given
by (6), and <p°(f) and ^°(f) are given respectively by (8) and (9).

The problem of a heavy disk resting on a horizontal plane was solved by J. H.
Michell [4] and represents a special case of our problem in which

n — 1, Xt = 0, Y i = wirR2, <J\ = —i

The analytic functions reduce to

iwR2 , ... .. , iwR2 2 , wR2 „*(r) = —g- log (r + t) + — r + -j- f

,... wR2 1 iwR2 . . .. 1 . _2iKf) = —J^~i 2 log ̂  ^ ~~ 2

The sum of the normal stress components can be computed according to the first of
Eqs. (4); thus,

n(, „ P sin e + 1
Tp, + T)e = wR[ 1 0 p + 2p sin 6 + 1

It can readily be shown that both normal stress components vanish at all points on the
boundary of the disk except the point of support.

The problem of a heavy disk resting on the ends of its horizontal diameter, as was
recently solved by Horvay and Poritsky [5], is another special case in which

n = 2, X, = X2 = 0, Y! = Y2 = ^wttR2, = 1, u2 = — 1

The analytic functions are

iwR2 , ,„2 , iwR2 2¥>(f)   log (f - 1) + -j- f

, ... 1 wfl2 . . 2 1 ■ r,2<Kf) = ~ "4" Ios ~ 2

The normal stress components at any point on the boundary of the disk except the two
at the supports are given by

= 0, = -£R
sin
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REPRESENTATION OF NONLINEAR FIELD FUNCTIONS BY THIELE
SEMI-INVARIANTS1

by WILLIAM M. MacDONALD, III,2 JOHN M. RICHARDSON,3
and LEON P. ROSEN BERRY1

1. Certain nonlinear field functions, possessing the property of space localization of
the gradients of the dependent variables, occur in the problem of flame propagation in
continuous media. The difficulties encountered in solving the equations of propagation
may be considerably diminished by introducing new dependent variables (intrinsically
connected with this localization) within a certain region, outside of which the equations
may be linearized and treated in a point-wise sense by well-known methods. Specifically,
we choose the x-axis as nearly perpendicular to the flame front and define the region as
x, (y, z) = x = x2 (y, %)• Taking a state variable, temperature T, for example, we choose
the new dependent variables as the kv given by

t {ity ± = log im (i.i>
„_0 v!

where

0(i) = £' dxeu* ~ ■ (1.2)

These definitions are closely related to the formalism of mathematical statistics. In
particular, if one considers dT/dx to correspond to an unnormalized distribution function
with range (xl ^ x ^ x2), the kv correspond to the Thiele semi-invariants [1] of dT/dx
and completely describe a given function in the range (xi S x ^ x2).
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