
215

VARIATIONAL PRINCIPLES OF EQUILIBRIUM OF AN ELASTO-PLASTIC
BODY*

BY

Y. YAMAMOTO
University of Tokyo

In this paper the author attempts to establish the general forms of the variational
principles of equilibrium of an elasto-plastic body, and to make clear the relations among
the principles presented previously [l]-[6],

§1 Fundamental principle. Consider an elasto-plastic body1 which is stressed by the
surface traction F' prescribed at each point on the portion SF of the surface S of the
body, the surface displacement vt prescribed at each point on the remaining portion
S, of S, and the body force IC prescribed throughout the interior V of the body. The
stress and strain distributions in the body are assumed to be given by a" and re-
spectively. Then we may select some incremental stress-strain law2 to hold at each
point in the body. We assume that this law is such that any small possible change of
the stress-strain state satisfies the condition

5<x" dbui > 0 \ (1)

which is a generalized form of the so-called uniqueness condition [7].
Now, suppose that the increment AF% of the surface traction F' on SF , the incre-

ment AVi of the surface displacement i\- on S, and the increment A/v' of the body force
K' throughout V are added gradually to the body. Then the resulting distribution of
stress, strain and incremental displacement becomes <r" + A a", e,-,- + Ae,-,- and A ir-
respectively. In the following lines we shall establish the variational principles which
determine the resulting stress-strain state.

Since the resulting displacement and strain are usually small, we apply the infini-
tesimal deformation theory to our problem. An artificial displacement Aw* , which is
continuous and has piecewise continuous first and second derivatives, and which takes
the prescribed value Ai\ on S, , is called an admissible displacement. Corresponding
to it we may determine the strain Ae * by the equation

Ae* = KAw*,- + Am*,-) 4. (2)

Then the fundamental principle may be stated as follows: The following expression is
non-negative for any artificial admissible displacement process Au*(t) (t0 t h)

*Received Oct. 29, 1951.
JWe apply the Green's theorem in this body, so that its surface must have a suitable regularity.
2We need not assume one to one correspondence of the increments of stress and strain.
3As usual the summation convention is used in this paper.
4Suffix j" is the sign of differentiation by the ordinate x'.
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such that Au%t0) = Am,- , the actual displacement in the equilibrium state, and Au*(tx) =
Am* , an admissible displacement;

III dV iT (<T" + A<7*"W) dAe'*M ~ III dV p(K< + AK'^Av*' ~ Am«)

ff dS(F* + AF')(Au* - Aut) 5,
(3)

where p is the density of the material, the strain Ae*(t) is derived by Eq. (2) from
Au*i(t), and the stress A<r*"(t) is determined by Ae*(t) and the stress-strain law.

The expression (3) is equivalent to

fff dV(a" + Acr") 5Ae* - fff dV p(JC + AK') SAuf

- JJ dS(F{ + A/'") 5Am1 + Iff dV f SA**"(£) d8Ae*(t),
(4)

where 5Am* = Au* — Au{ , etc. By the principle of virtual work the first three terms
in this expression vanish. Furthermore, the last term is always non-negative by Eq. (1).
Thus, our proposition is proved.

§2 Minimum principles. Unfortunately, the fundamental principle is not generally
useful, because the value of the integral

['4< (a"' + Aa*U(t)) d<m (5)

usually depends upon the stress-strain process. Hereafter we will assume that the value
of this integral is determined only by the final values of A a*" and Ae* at each point
in v, and that any stress-strain state is attainable from an arbitrary state. In such cases
the following principle is clear.

Principle I: The expression

U + AU* a fff dV 01'' + A <r*,:,'(0) dAe*(t)

- fff dV P(IC + A/v') Au? - ff dS (F* + AF') Au*,
S F

takes its minimum value when the admissible displacement coincides with the actual one.
Certainly, the first variation becomes,

S(U + AU*) = fff dV{ffU + Act*"') dAt*,- - fff dV p(K' + AK') SAuf

- ff dS(F' + AF') 5Am* .
S F

6Integration f%l* ... dAef^t) is taken along the process of the strain A«*.(£)■
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From this we obtain the well known equilibrium conditions of stress as follows:

(</'' + Act*"), + p(K< + AK*) = 0, in V, (6)

except on the discontinuity surface S,t of stress in V,

[(<rV + Aaf) - ("- + A**")]«* = 0, on Sd , (7)

where m,- is the unit normal vector on Sd , and <r*+ and a'i are the values of a" on the
both sides of Sd, etc., and

(<r" + A<7*= F' + AF\ on SF , (8)

where n,- is the unit vector in the direction of the external normal of surface. The second
variation becomes

8\U + AU*) = fff dV ' 8A<r*"'(t) d8Ae*(t).
Since by Eq. (1) this value is non-negative, U + AU* takes its minimum value when
the admissible displacement coincides with the actual one.

By (2) we may easily obtain the equality

JJJ dV <ru At* - Jff dV PK' Au* - JJ dS /<" Au*
Sp

say. (9)

= JJ dS <r"n, AVi = const. = U,
S v

Then the following principle may be obtained by Principle I and Eq. (9).
Principle I': The expression

AU* = JJJ dV J A<r*u(t) dAe*(t) - JJJ dV p AK< Am* - JJ dS AF' Am,
S F

takes its minimum value when the admissible state coincides with the actual one.
§3 Maximum principles. Since the incremental strain is given by Eq. (2), the in-

volute transformation of Principles I and I' may be easily obtained by the general
method [8] [9].

In the first place, Principle I' is equivalent to the following variational problem
without any additional conditions,

AU' = JJJ dV J ' A<t**"(<) dAe**(t)
- JJJ dV P AK' Au** - JJ dS AF' Auf*

SF

- JJJ dV X'^Aef* - | (Am** + Am**)

- JJ dS //(Am?* - A»4) = Min.,

(10)
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where Am** is an artificial displacement which is continuous and piecewise differentiable,
Ae** is an artificial strain which is independent of Aw** and piecewise continuous,
Acr**" is the stress corresponding to Ae** , X" and /i* are Lagrangian multipliers, and
especially X" is piecewise continuous and differentiable. Then the natural conditions of
Eq. (10) become

Ae** = i(Aw** + Auf*), in F,}

\ (11)A uf* = A Vi , on S, , )

Atr**" = X", in F, X"n, = on S, ,

AF' = X"n, , on SF ,

X*' + p AK' = 0, in V except on the discontinuity surface Sd of X", and } (12)

(X'+ — X")m,- = 0, on Sd .

Since, if we add Eq. (11) to Eq. (10) as the additional conditions, Eq. (10) returns
to Principle I', we substitute and m* into Eq. (10) from condition (12), i.e.,

A U'

(13)

sav.

= - [[[ dVyAc**'1 Ae** - [ dAe*?(t)
(12) \ *^0

+ JJ dS Aa**" nfli
s,

= -JJf dV f'° Ae**(<) dA<7**,,«)
+ JJ dS Act**" n, AVi = At/**,

Now, the value of the integral

/»A a** pAt**

/ Ae**(<) dAa**'\t) = A<7**"' Ae** - / AcdAe??(t)
Jo Jo

(14)

is also determined by the final values of A<r**" and Ae** only. Accordingly, we may
regard Acr**" as the independent variable in the expression (13). When Aa**" is piece-
wise differentiable and satisfies the equilibrium conditions (6), (7), and (8),6 we call
such a stress Acr**" an admissible stress. Then, by the general theory of the involute
transformation the following principle is valid.
Principle II': The expression

AU** = _ JJJ dV J At**(t) dAa**"'(t) + JJ dS Acr**" n,- Av{
S v

takes its maximum value when the admissible stress coincides with the actual stress.

^Because the conditions (12) correspond to the equilibrium condition.
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Certainly, we may confirm this principle as follows: Since, putting Ac**" — Aa" =
8Aa**", it is clear that, SAa**"nj — 8F' = 0, on SF ,

SAa*r' = -d(PK') = 0, in V,

except on the discontinuity surface Sd of 8Ac**", and

(SAa**" - 8Aa**ii)mi = 0, on Sd ,

we obtain the equality

o = JJJ dV Auf* 8Aa**'> = -JJJ dV Au** 8Aa**u + JJ dS Au** n, SAa**" (15)
Sv

for any function Aw? * which is continuous and has piecewise continuous first derivatives.
Then the first variation of AU** becomes,

8AU** = -JJJ dV At** 8Ac**u + fj dS SAc**" n, Ay,
S v

— — JJJ dV(Aef* — Au**) 8Aa**" + JJ dS 8Ac**" n,(At>i — Au**).
Sv

That is, as the natural condition of this principle, we obtain the fact that Aef * may
be derived by Eq. (2) from suitable possible displacement Aw?*. Furthermore the second
variation of AU** becomes,

82AU** = - JJJ Ae**(t) dAa**"(t)

- ^ A«i,(<) dAa\t) - (Aa**'' - Ac') Af,,l

= - JJJ dV j"' 8Ae**(t) d8Acr**i'(t).
Since, we may attain to the stress-strain state (Ac", Ac,-,) from the state (A<?**", At**)
by suitable process, we obtain the equalities

/» 5 Aa** <» 6 A t**

/ 8Aet?(t) d8Aa**"'(1) = 8Aa**i]' 8Aef? - / 8A<r**"(t) dSAeff(t)
*'o J 0

/» — S A e**

= / 5'Aff**"(f) dt'AefW),
Jo

where

8'Ae**(t') = A*%*(-?) - At**.

Accordingly, by condition (1) the value of 82AU** is always non-positive. This shows
that AU** generally takes its maximum value when the admissible stress coincides with
the actual stress.

By Eq. (9), we may obtain the following principle.
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Principle II: The expression

V + AU** = - JJJ dV J Ae**(t) dAa**''(t) + JJ dS^a" + Aa**1''') n,- Av<
s,

takes its maximum value when the admissible stress coincides with the actual.
From the general character of the involute transformation the following relations

are obvious,

Min. AU* = Max. AC/**, and )
? (16)

Min. (JJ + AU*) = Max. (JJ + AC/**) = C7 + Min. AC/*.)
Certainly,

IA«<*=Aui
Min. AU* = AC/*

= JJJ dV [ Affu(£) dAeu(t) - JJJ dV p AK' Am, - JJ dS AF* Aut
S F

= JJJ dV Act"' Ae,-,- - JJJ dV p AIC Am,- - [J dS AFl AUi
sF

— JJJ dV^Acr" Ae,-,- — J Acr"(t) dAe^it)^

= JJ dS Ao"tJ n, Avt - JJJ dV Aet,(t) dAa"(t)

= AU* = Max. AU**.
A a***i = A <r*i

§4 When are our principles valid? As already described our variational principles
are valid when and only when the values of the integrals (5) and (14) are independent
of the stress-strain process. Accordingly, when and only when the value of the integral

( ^ deu (17)
^0

is determined by the final values of stress and strain only, our principles are valid.
There are three reasons why the value of the integral (17) depends upon the stress-

strain process: The first is the dependence of the stress-strain law upon the plastic
history. Accordingly, we must assume that the stress-strain law is independent of the
instantaneous plastic history. The second is the irreversibility of the stress-strain relation
in case of the plastic deformation. That is, the stress-strain relations for loading and
unloading states are individual ones. Then, our principles are valid for the cases where
we may expect that the actual incremental process does not contain any unloading
process at any yield surfaces except the initial one. Because in such cases we need not
adopt the artificial admissible processes which contain such unloading processes. The
third is the lack of the complete integrability of the integral (17) in stress space. We
may easily obtain the general form of the stress-strain law which makes the integral
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(17) completely integrable if the unloading processes do not occur, and it becomes as
follows:

= Etm da" + F(f) ̂  W + \ df \ (18)
da > da '

where Eiju = EkUj is the elastic modulus, /(a) is the so-called loading function which
is a function of <x" only and the domain / < const. = c is the instantaneous elastic
domain, and F(f) is a positive function of f(a) only [10]. In this paper we assume such
a stress-strain law.7

As above described, even if the stress strain law is given by Eq. (18), we can not
assert the validity of our principles. But, if we can foresee that the stress-strain process,
by which the resulting stress-strain state is attained, does not contain any unloading
processes at any yield surfaces except the initial one /(a) = c0 , where c0 is determined
by the plastic history just before the incremental deformation, we may form our prin-
ciples for the admissible states which are attained by such processes. If we assume the
following reversible stress-strain law which satisfies the condition (1), we may form
such principles,

dktij — Eim dAahl, wherever / < c0 , or / = c0 but df < 0,

= Eim dAa" + F(f) jL jL dAa"[(a" + AO

wherever / > c0 , or / = c0 but df > 0,

where / = f(a" + Atr").

The solution state of such principles satisfies the equilibrium and compatibility condi-
tions, and by our assumption it is attainable by a suitable process whose stress-strain
relation follows the Eq. (18), and which does not contain any unloading processes except
those on the yield surface / = c0 . That is, in this case the actual resulting state is gov-
erned by these principles.

§5 Principles for the stress and strain rates. Usually the mechanical quantities, such
as strain, vary with finite time rates during a gradual stressing. In such cases they may
be regarded to relate linearly with time during small time interval r, i.e.,

Ae*(£) = e*(£), etc., (0 < t < r)

except in the very small region whose volume vanishes with r. In the limiting case where
r tends to zero, we may regard that the process, by which the resulting state is attained,
does not contain any unloading process except those on the initial yield surface. Then,
as already described, our principles may be formed as principles for the rates. That is,
they are easily obtained from Principles I' and II' as follows:

The expression

l'a: | U* = Iff dV±**"i* - Iff dV pK'ii* - II dS F'u*

'This is a generalized form of the Hodge-Prager stress-strain law [1].
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takes its minimum value when the admissible displacement rate u* coincides with the
actual one.

The expression

11^: | U** = -fff dV^b**"#? + ff dS <7**"nA
Sv

takes its maximum value when the admissible stress rate b** coincides with the actual
one.

The principle of Hodge and Prager is equivalent to our Principle II' [1],
We may write down our principles for specific incremental stress-strain laws which

belong to our general form (18). For example in the following lines we shall establish
the principles for the material whose stress-strain relation follows the Prandtl-Reuss
law,8

= (2G„)~'s" + MS"',

wiie re

•ij • ii 1 fi'j kk r 1 i/ tS = <7 —-So-, J2 = ~S S ,

and
!0 wherever J2 < k , or J2 = k but J2 < 0,

.
(2k2) V'e,, > 0, wherever J2 = k2 and J2 = 0.

In this case the following relations are easily obtained,

= 0, = s = (2 G)~W + ns"s",
b'% = - Ms'e,,) = (2Gr0)_Is"s" > 0.9

Then our principles become as follows:
The expression

J'b: \ U* = fff dVG0(km - - fff dV pK'u* - ff dS F'u* ,
Sf

where

fo, wherever J2 < k2, or J2 = k2 but s"t* < 0,
= J _

'(2k2) lS"e^ , wherever J2 — k2 and s"e* > 0

and the expression

II£: | U** = -fff dV(4Go)~1 + ff dS b***^
s.

take on minimum and maximum values respectively when the admissible rates coincide
with the actual ones.

8The Prandtl-Reuss law and the Levy-Mises law belong to the Hodge-Prager's general type as
the extreme cases [1],

9This condition corresponds to condition (1).
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The principles of Greenbefg are equivalent to these principles [2] [3].
In the case where the elastic strain is very small compared with the plastic strain,

we may neglect the elastic strain in the stress-strain law. In such cases our problem
becomes somewhat complicated, because the stress state is not uniquely determined by
a strain state. But the essential properties of our problem are unaltered by such cir-
cumstances. For example, we derive the principles for the material whose stress-strain
relation follows the Levy-Mises law8 i.e.,

den = Xs",

wherever J2 < k2, or J2 = k2 but d.J2 < 0

(2k2)''s" dtij , wherever J2 = k2 and dJ2 = 0.

In this case the increments of displacement and strain increase linearly with time, but
the stress change is independent of time, i.e.,

At* = e,*•(<), Ac*" = const., etc., (0 < t < r).

Then the following relations are obtained,

de„ = s"'[de„ dtPQ(2k2rT\

[*' (a"' + Aa*"(t)) dAt*(t) = (<r" + A**") Ae* = (2k2 Ae* Ae*)I/2
•lo

I* Ait**
/ Ae?*(t) dA<r**"(t) = 0,

•lo

[ 8a"'(t) dSe„(t) = Sa" 5e„- = 5e„„(2A;2)-1]"2 > 0. 9
•> o

Then our principles are easily obtained by Principles I and II as follows:
The expression

U* = JJf dV(2k\aiJ'/2 ~ fff dV PK'u* - Jf dS Fu*
Sf

and the expression

IIe: U** = jf dS(cr'' + A<T**i')nivi
St

take on minimum and maximum values respectively when the admissible displacement
rate it? and the admissible stress A a**" coincide with the actual ones.

The principle of Markov and Hill and the principle of Sadowsky are equivalent to
lc and IIc respectively [4],

§6 Conclusion. The fundamental principle and Principle I are valid even in the case
of finite deformations, but the other principles have an essential restriction in condi-
tion (2).10

I0The Phillips' second principle seems to be dubious in some respects [0]. Involute transformation
for finite deformation becomes very complicated.
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By the thermodynamical method we may prove the fundamental principle for stable
equilibrium. Then the condition (1) seems to be essential in case of stable equilibrium.11
Moreover, it is notable that usually the condition (1) is equivalent to the uniqueness
condition.

As described above our minimum and maximum principles are valid only in the
restricted case. Accordingly, for the general cases we must apply the principle of virtual
work directly, instead of the variational principle.
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"If the condition (1) fails, new instability phenomena may occur. It seems to the author that it
corresponds to fracture or yield.


