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REPRESENTATION OF NONLINEAR FIELD FUNCTIONS BY THIELE
SEMI-INVARIANTS'

by WILLIAM M. MacDONALD, III,2 JOHN M. RICHARDSON,3
and LEON P. ROSEN BERRY1

1. Certain nonlinear field functions, possessing the property of space localization of
the gradients of the dependent variables, occur in the problem of flame propagation in
continuous media. The difficulties encountered in solving the equations of propagation
may be considerably diminished by introducing new dependent variables (intrinsically
connected with this localization) within a certain region, outside of which the equations
may be linearized and treated in a point-wise sense by well-known methods. Specifically,
we choose the z-axis as nearly perpendicular to the flame front and define the region as
Xi(y, z) ^ x S. x2 (y, z). Taking a state variable, temperature T, for example, we choose
the new dependent variables as the kv given by

£ aty ^ = log m)] (l.i)
y-0 V1

where
fXa f)T

4>{t) = dxe^ ~ ■ (1.2)

These definitions are closely related to the formalism of mathematical statistics. In
particular, if one considers dT/dx to correspond to an unnormalized distribution function
with range (xt x ^ x2), the k„ correspond to the Thiele semi-invariants [1] of dT/dx
and completely describe a given function in the range (a^ iS x ^ x2).
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The semi-invariants were chosen (in preference to the moments

[ rf""f ' (L3>
for example) because evaluation of the integrals

f" dT
!x^x"T- (1.4)

led to application of the Fourier inversion formula to the characteristic function (1.2),
where the exponential form considerably lessened the difficulties involved. The investiga-
tion was extended to include integrals of the form

f' dx xnT1T2 ■■■ Tm ■ (1.5)

2. The characteristic function of dT/dx, in the region xx(y, z) S x ^ x2(y, z) is
given by Eq. (1.2). Using the Fourier inversion formula one finds

~ J dte'"x<t>(t) = |~ » Xi ^ x ^ x2 (2.1)

= 0, otherwise,

from which the following expression for T can be obtained if dT/dx satisfies certain mild
restrictions [2]:

T(x) - T{xi) = (J dt(e~itx - e~i'Xi)t~i<t>{t) dt. (2.2)

Writing

<t>(t)e~"x = ^ exp [it(^ - xO], (2.3)

it can be seen that, for dT/dx bounded, 4>Q)e 'tx has no poles or other singularities other
than an essential singularity at infinity and that here

<i>(t)e~,tx —> 0 as t —with —ir/2 < arg t < x/2.

We use this fact to reduce Eq. (2.2) to a more suitable form by writing

[ dt(p~itx - e'itXl)r1<j>(t) = P f dt4>{t)e-i"r1 - P [ d14>{t)e~iiXx f1, (2.4)
J— 00 J —<x> — CO

where P • • • denotes the Cauchy proper value

Lim
e->0 [£>/"]■

Contour integration and application of the theory of residues then yields for the last
integral on the right of (2.4) the expression

P j" dt e~"Xit~1<t>{t) = 0). (2.5)
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If 3(2) is defined as

3(s) = T(x) - |[r(*i) + T(x2)], (2.6)

then from Eqs. (1.2), (2.2) and (2.5), one obtains

m = (£) (2.7)
and

^ = (i) L du""M- <2-8>
In Eqs. (2.7) and (2.8) and henceforth we conventionally denote P /_« by /_„ .
3. We now apply (2.7) and (2.8) to

<t>Xt) = [jxeu*3' g, (3.1)

obtaining

4>X*) = i'(27r)—1 J dxei,x[{j dte-i"r14>(t)J' / (3.2)

Using independent variables t0, 11 , • • • , ts , one can write

4>,(t) = i'(2iry~1 f dx f dt, ■ ■ ■ f dt0 II [CVWWo) exp ixa, ,
*J—co t/—co v—00 r = 0

8

where c,(t) = t — tQ . (3.3)
1

Since (27r)_1 /_«, dx elxu = o(u), one can write
*

= i'(2ir)—1 [ dt, • • • f (3.4)
J -co J -co r = l

To evaluate

v, = J dxx'S*f|, (3.5)
one notes that

^"'(O) = (d"<p/dt')t-o = a, = i"n, , (3.6)

and hence that

<t>.(t) = E aj/vl. (3.7)
v = 0

The av cannot be obtained in analytical form but one can easily expand a„ in a Taylor's
series

a„(Ko

- («.)- + £ (t?)«. +1 i idKi/p ' 2 i_3 ,_3 \3/c,' 3k,■
K,K,- + • • • (3.8)

P
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about the point P(k0 , «i , k2 , 0, 0, 0 • • •) in K-space («,• defined by Eq. (1.1)). The coeffi-
cients in this expansion are found to be

(a,)p = ^.o(-l)W2r/23stf„(T,), (3.9)

= 4;,03s S„. + ( E c)s,t0], (3.10)

and

a a' ) — + <S„„ C + Sp„ ̂2 C Syof 0
OK,T O K^/ p [_ p = i p=l \ p = 1 '

(3.11)

where the following notation has been introduced:

A:,„ = (i/2t)Y+V<t\ju!,

3» = e (,+lu° f dt, ■ ■ ■ [ dtt II [<t>{tr)/tr]<t>\— 0 an operator,
«/ —co v —oo r = 1 \ <2 = 1 '

s.. = [{fMS/Ma)}<.'■> i

and is the cth Hermite polynomial.
4. Treatment of the equations of hydrodynamics by the moment transformation mil

clearly involve integrals in which the integrand includes various combinations of the
gradient of a dependent variable and some other variable. We must therefore generalize
the foregoing treatment to the case where 3 is not merely the temperature but a general-
ized vector in a space of n dimensions; this fact can be represented symbolically by writing

3 = (& ,&,••• ,30, (4-D
where the product of two vectors 3 and rj gives a vector in the product space of 3 and r\,
or in our notation,

(i = 1, 2, • ■ • , n\
Sv = (3,17,-) • (4.2)

V = 1, 2, • • • , n)

Designating by ip(t) the characteristic function of the component 3; of 3, one finds,
as in section 2, that from

follows

and

MO - e*p{ ± .if}- /_>,»• g-% (4.3)

f " (1) <4'4)

3. - (,'J f dir'e ">,(!). (4.5)
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Here, 3; is again the deviation from the average over the infinite range of x of the corre-
sponding dependent variable. The canonical integral

[ dxe'"T P (4.6)
J- co OX

represents then the characteristic function <f>(t) whose components are given by the
equation

<!>«>,«,.-.am+At) = f dxe'^Saz ■ ■ ■ a.%1 , (4.7)

which is easily transformed by (4.5) into the form

= (j^:) / dtai---J dtami^ n*«M/*<)lfc.„+,($m) (4.8)

where = t — t„ . We write, as before,

*.,.....,..+>(0 = z«: "M'M, (4-9)
v = 0

where
aiOt • • *am+i   j(.v) /r\\

rai,aJl*"10|»+i\^'/)

the coefficients of this series then being found by a Taylor's series expansion of the form

_ ia, 0»+,)J, -)_ exp
n = 0 i-1 OKain/\ /.

(4.10)

about the point in K-space for which nain = 0 for n S: 3. The first term is given by

(«ra*-*-+*)p = {^::........-+1(o)}i. (4.ii)

which is, from (4.8),

), = j jt, J _ dtm n (^p)p • (4-12)

On carrying out the operations indicated on the last factor in the integrand one
finds (see appendix I)

(a«»•"<■•»+•)p ^ j" ^ j.j [exp (tz'i — <'yK)]//„(r„), (4.13)

£ dr t"i{exp (ix't - t'At)} H,(rm), i < m + 1, (4.14)

{exp (tV< — <'Ai)}£,,„ (4.15)

and
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where
( • \ to / \ v/2 m +1

£)(-«»Pg...
The exponential is the matrix representation of the quadric,

j to | m

^ ^ t At ^ (^o,-,2 ~f~ Kam+1 ,2)ti ~ ^Om+i,2 ^ ^
^ i = l p>Q= 1

[to to

53 Kajltj ^aTO+il 53
J-1 J-l

= (^)1/2( XX + 7^),
\ £ / \ p=l ^aw+1,2 '

and the integral is over m-dimensional space.

APPENDIX I—Evaluation of (a,)P and (daJdna)P
These integrals (3.9, 3.10, 3.11) all reduce to integrals of the form

dr exp [ — AfiXi , x2 , • • • , xn)K"zr • • • xT,

with ^2 m,K even if n is odd and vice versa (m, integers),
n

f{xx , x2 , ■■■ , xn) = + s SZ z.z, .
t = i ^ tvy

Obviously, several integrations by parts would reduce this to an evaluation of a well-
known integral. A simpler technique is available. For example, with s = 2 we insert the
parameters a, b to form:

f(a, b) = f dxx f dx2(x1x2)~1 exp [—K2(axl + x2 + bx^)].
J — 00 — 00

One then evaluates Jo db df /db to find

/(a, b) = —2w sin-1 (b/2al/2).

Setting a — b = 1 in the derivatives of this function then gives the values of the required
integrals.

Moments up to the fifth have been tabulated for s = 1 and s = 2. For s = 3 only first
terms for moments up to the fourth have been evaluated.
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