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yo will be taken to be A sin ¢. (This is exactly the problem solved by MecLachlan in [1],

p- 190). Then
2 2
p(t) = [{% -~ l} - A? cos 2!],

q.(t) = A’®sin 2t,
A2

ao=_—1.

2
a2=Co=d2=O, Cz=A2; b2=__
Notice that for periodicity we would need

1 A4 4 . )1/2
“’“2(16‘ g T4 -1 =0
since here w = 1. If A®> = 4, then this condition is satisfied. Further, using (8) since
Cop — 2(01 = Oand %{(Cg + b2)2 + (az - d2)2} > 0
A 1
M= —g+35

Thus A\, < 0 for A*> > 4 and >0 for A < 4.

This example as was remarked is given by McLachlan [1] and was presented merely
to show the ease in which stability characteristics may be obtained once A, is computed
in terms of a, , @z , by, ¢z, and d; .

REFERENCES

. N. McLachlan, Ordinary non-linear differential equations, Oxford, 1950.

. H. G. Cohen, Subharmonic synchronization of the forced Van der Pol equation (To appear in the Pro-
ceedings of the Colloquium on non-linear vibrations, Ile de Porquerolles, August, 1951.

. J. J. Stoker, Non-linear vibrations, Interscience, New York, 1950. (see especially Appendix I).

. E. L. Ince, Ordinary differential equations, Dover, New York.

. M. J. O. Strutt, Lamésche, Mathieusche und verwandle Funktionen in Phystk und Technik, Julius
Springer, Berlin, 1932.

. A. Liapounoff, Probléme general de la stabilité du mouvement, Princeton University Press, Princeton,
1949.

O W DN =

=]

ON THE RELATIONSHIP BETWEEN THE MARTIENSSON AND DUFFING
METHODS FOR NONLINEAR VIBRATIONS*

By ROBERT E. ROBERSON (Mechanics Division, Naval Research Laboratory)

The background for a number of one-term approximation methods and their appli-
cation to forced nonmlinear vibrations has recently been discussed by Schwesinger.'

*Received Aug. 15, 1951. This paper corresponds to part of a dissertation submitted to Washington
University in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

1G. Schwesinger, On one-term approximations of forced nonharmonic vibrations, J. Appl. Mech. 17,
202-208 (1950). Note that he attributes to Riidenberg the method that is designated here as Martiensson’s.
method. C ‘ s :
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As he points out, such one-term approximations may be useful in problems of analysis
when the response is close to sinusoidal, as is frequently the case for small nonlinearities.
They are not the ultimate tool, however, for one can always go to approximations which
contain the higher harmonic terms as well. The situation is different for problems of
nonlinear synthesis. There, the nature of the problem is such that approximations of
more than one term are virtually prohibited, and one is forced to accept answers that
are given by the one-term methods. Thus, there is a body of problems for which such
methods have intrinsic importance.

The requirements of synthesis have led to a re-examination of some of these one-
term methods. For this purpose, it is important to know in a general way whether the
use of the various methods leads to different synthesis. In particular, one should know
which of the methods are really independent of one another, in order to know how many
synthesis possibilities must be examined. It was found that the results obtained by the
methods known by the names of Martiensson (or Riidenberg) and Duffing® are not
independent. For the class of equations to which both methods are applicable, there is
a simple relationship between their results. The purpose of this note is to develop this
relationship.

The fact that the results of the two methods are simply related is the more striking
because their rationales are so different. Briefly, these are as follows. In the Martiensson
method, since an assumed one-term solution does not generally satisfy the differential
equation identically, one forces satisfaction at two points, say ¢ = 0 and at the quarter-
period. In this way, an algebraic equation is obtained for the amplitude of the one-
term solution. To use the Duffing method, one writes the equation in a form for iteration,
and puts an assumed one-term solution into this equation as a first approximation. In
order to enforce the requirement that the next approximation be periodic, one is obliged
to choose a certain coefficient equal to zero. This again leads to an algebraic equation
for the amplitude. As a development of the Lindstedt perturbation method, the Duffing
method is perhaps the more rational procedure of the two. (It is fundamentally different,
of course, in that it permits extension to higher approximations.)

Now let us consider the methods in greater detail. They are usually illustrated only
for systems with one degree of freedom, but it is not difficult to extend them to certain
higher order systems. The Martiensson method, as ordinarily applied, is limited to
systems without dissipation. The most general equation to which it seems appropriate,
at least without major changes in formalism, is

@ % + Lx + »f(x) = Fsin t. €))

Here, 2(t) and f are (n X 1) column matrices, F is a constant (n X 1) matrix, and L
is a constant (n X n) matrix. Both Q° and » are scalar parameters, the former being
related to the frequency of excitation and the latter being the nonlinearity parameter.
Suppose that f(z) is a continuous odd function, with f(0) = 0. We will seek a periodic
solution with period 2.

Let us apply the Martiensson method formally to Eq. (1). We assume an approxi-
mation solution 2 = a sin ¢ (a being a column matrix of amplitudes), which satisfies

*We restrict our consideration to the first approximation by this method, in effect making it a one-
term method.
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the equation at time ¢ = 0. If we require that it also satisfy the equation at ¢ = =/2,
we obtain

(@ — L)a — vf(a) + F = 0. (2
On the other hand, let us write Eq. (1) in a form for iteration as
(2 + 2V) = (@ — D2 — »f(x'”) + Fsin ¢.
Using the same approximation as before,
(2" + 2 = [(@® — L)a + F]sin t — »f(a sin ¢). 3)

Since f is a periodic function of ¢ with period 27, we can write
flasin ) = §,(a)sin t + Y Fyn_y sin (2m — 1)t.
m=2

Following the Duffing iteration method, we require that no secular term arise when
Eq. (3) is solved for z'*’. This means that we must put the coefficient of sin ¢ in Eq. (3)
equal to zero, namely

(9 — L)a —vF,(a) + F = 0. 4)

Equation (4) is the analog of Eq. (2), and is identical except that the first Fourier co-
efficient of f(a sin ¢) replaces the value f(a).

This result has limited usefulness in its general form. However, in systems which
contain only one nonlinear element, f is particularly simple. It has the representation
f = Me(z;), where M is a column matrix and ¢ is a scalar function of only one of the
z-components. As perhaps the simplest possible example, we may consider the case
where ¢(x;) = z7 , i.e. a simple power function. Equations (2) and (4) become re-
spectively

(F—La—vat?+F=0

(®—La—ca?+F=0

where ¢ is the constant whose value is the first Fourier sine coefficient of sin™ ¢ For
example, if m = 3, then ¢ = 3/4.

The result of this simple special case has a very useful implication in synthesis
problems. It means that if a synthesis is attempted for a system containing a single
nonlinear element which obeys a power law, the system being described by Eq. (1),
then the procedure follows identical paths for the Martiensson and Duffing methods.
It is known at once that the optimum nonlinearity by one of the methods, say the
Duffing, is just 1/c¢ times as large as those predicted by the other, and that optimum
values of any parameters contained in L are identical by the two methods. Nothing
should be inferred, of course, as to which method is better as a one-term approximation,
since this is an entirely separate problem.



