
225

DIFFICULTIES WITH PRESENT SOLUTIONS OF THE
HALLEN INTEGRAL EQUATION*

BY

S. H. DIKE
Radiation Laboratory, The Johns Hopkins University

I. Introduction. In a recent paper,1 rather serious discrepancies were shown to exist
between values of broadside absorption gain and back-scattering cross section as found
from experiment, and those predicted from Hallen's first-order solution2 as modified by
King and Middleton.3 In this paper these discrepancies and certain additional short-
comings with the present solutions to Hallen's integral equation will be discussed.

II. The first-order current distributions. It can be shown that the current distribution
on a receiving dipole antenna is given by4

Ir(z) = IE{z) - I,(z), (1)

where IE(z) is the current distribution due to the external field, , on the antenna
with zero load (shorted), and I,(z) is the current distribution along the antenna when
driven by a voltage, VL , equal to the voltage drop across the receiving antenna load.
The distribution of Eq. (1) need be considered only in the cases where scattering be-
havior is desired. All the other properties of a receiving antenna usually of interest,
such as absorption gain, impedance, and effective length, are determined by the driven
current distribution alone.

The two different current distributions involved are given as follows:
a. The transmitting dipole. The first-order solution of Hallen's integral equation for

the current distribution on a center-fed dipole of length 2h and radius a is given by

I,(z) = j2irV0f,(z){WtH2y\ (2)
where V0 is the voltage at the terminals, f = 120x ohms, and

/»(z) = f'*(z) + jf','(z) = by cos @z b2 sin /3 | g | — C(z) sin 0h + S(z) cos fih, (3a)

6i = [2ip, + E(h)] sin I3h — S(h), (3b)

b2 = [2\l/t + E(h)] cos ph — C(h), (3c)

H2 = m+ jH!/ = [it + EQi)] cos (8h - C(h). (4)

*Received September 25, 1951.
[S. H. Dike and D. D. King, The cylindrical dipole receiving antenna, Tech. Report No. 12, Radiation

Laboratory, Johns Hopkins University, 1951. (Submitted to Proc. of I.R.E. for publication).
2E. Hall6n, Theoretical investigations into the transmitting and receiving properties of antennas, Nova

Acta, Royal Soc. Sciences (Uppsala) 11, 1-44 (1938).
3R. W. P. King and D. Middleton, The cylindrical antenna: current and impedance, Q. Appl. Math. 3,

302-335 (1946).
4R. W. P. King, H. Mimno, and A. Wing, Transmission lines, antennas and wave guides, McGraw-Hill

Book Co., New York, p. 163; 1945.
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The functions C(z), S(z) and E(z) are defined in lief. 3. The function \p, is the ex-
pansion parameter. It is determined in the King-Middleton method by considering a
function defined by

^,(z) = [ gt(z, s)r~xe~'*r ds, (5)
" —h

where

and

such that

r = [(z - s)2 + o2]1/2, (6)

9tie, s) = /(s)//(z), (7)

I.iz) = I0Jiz);I,is) = Io.fis), (8)

where I0, is the terminal current in the driven dipole. In the limit of vanishing dipole
radius the driven dipole current distribution can be shown to be5

J,(z) = 70, (sin fib)'1 sin p(h — | z |). (9)

King and Middleton choose the function /(z) = sin (HQi — | z |) giving

g,{z, s) = sin (3(h - \ s |)/sin fi{h - | z |), (10)

and

,, _ Cjz) sin /3h - Sjz) cos ph .
^ t\&) — 'of i | i\ • (11)sin j8(/i — I z I) '

King and Middleton then argue that ^,(z) is predominately real, and that a suitable
expansion parameter may be found by setting

¥,(*) = I *«(*>) I = it , (12)
where z0 is chosen so that ^,(z0) is a good approximation to ^(z) over most of the
antenna. Accordingly, they choose

SC(0) sin 18h — Si0) cos (3h | (sin /3h) 1, /3h <

it = \ (13)

\\ -1)sin /3h — h — cos 0h ffh > |.

b. The unloaded receiving dipole. The first-order current distribution on a shorted
dipole antenna placed parallel to the electric vector of a plane-wave, far-zone field, is

^e(z) = j4irEif , (14)

where

fsiz) — 2\p, cos j8z + E{z) cos /3h — C(z) + CQi) — cos ph[2\pr + E(h)], (15)

Hi = H[ + jH[' = \pr cos 0h + EQi) cos (3h — Cih). (1G)

6S. Schelkunoff, Electromagnetic waves, D. Van Nostrand Co., New York, 1943, p. 142.
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Fig. 1. The Function ^rO?) for fih = 0.4.
il = 10
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FiG.[2.[The Function 'Mz) for 0h - ir/2
Q = 10
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Fig. 5. The Function *ir(z) for 8h = 2w
Q = 10
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For the indefinitely thin shorted dipole, the current distribution is given by6

IE(z) = /0^(1 — cos 0ft)_1(cos 02 — cos 0ft). (17)

By the arguments of King and Middleton one is led to choose f(z) = cos 0z — cos 0ft
so that

, . cos 0s — cos 0ft ,,
»l'< s) - cos m - cos eh' (18)

and ^r(z) becomes

_ CM - EH cosjh
cos 02 — cos 0ft

This function is plotted in Figs. 1 to 5 for various values of 0ft and for 12 = 2 log
2ft/a = 10. By consideration of these figues and using the arguments of King and
Middleton, one finds that a suitable choice of is

I1C(0) — E{0) cos /3ft | (1 — cos 0ft) 1, 0ft < 7r,

*r = \ , (20)
(i | C(0) + £(0) I, 0ft > 7r.

In the limit of very small 0ft, =0 — 2 and \pr = 12 — 1.
For the broadside case both the currents 7„(z) and IE(z) are even functions. Equation

(1) may now be expressed in terms of the foregoing as

7-(z) - SWT V"® MM, )• <21>

where Ze = Z„Zt/(Za + ZL). (22)

Za is the antenna impedance defined by

Z„ = V0/I0, . (23)

ZL is the receiving antenna load impedance. For matched load

ze = I 172Ra , ZL = Z* . (24)
III. Formulas for broadside gain, effective length and back-scattering cross section.

Three equivalent expressions for absorption gain were derived in Ref. 1. They are

_ TT [ Za\2 | 0ff,(ft) |2 ,
(7i ~ rvX I h2 I2 ' (25)

1 0g.(ft) I2 ^
1 2iptT ' ^ '

G. = (27)

6King, Mimno, and Wing, loc. cit.
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where

T = Hf/f'M - 0), (28)
and where, for the broadside case,*

PgXfy = P f f,(z) dz = (4^, — 2Q)(1 — cos /3h)
(29)

+ 2 Ein 2/3h + cos /3/i(Ein 2(ih — Ein 4/3/) — 4 Ein (3h) — j sin f3h Ein 4/3A.

Ra is the radiation resistance defined as the real part of Eq. (23). The symbol d denotes
the effective length of the antenna. For the broadside case7

d = y- f I,(z) dz, (30)
J-Ov J -h

or

\d |/X = I 0g,(h) I (2tt I /.(0) I)"1, (31)
or

| d IA = I Z. 11 Pg.(h) | (f*. I I)"1. (32)
The relation for the back-scattering cross section, cr, derived in Ref. 1 is

<7A2 = I /3g,(h) - BZJE(0)pg„(h) I2 (Trtf I H, I2)-1, (33)
where

B = j2ir(MlH2yl = Mm' + I H2 I2)-1, (34)

and

0gE(h) = /3 [ fE(z) dz = sin /3/j(4i/<r — 20 — 4 log 2
J -h

— j Ein 4,3h + 2 Ein 2/3/i + Ein 4@h) . .
(35)

+ cos /3/([2/3/i(Q — 2^r + 2 log 2) — (3h Ein 4/3/?, — 2/3/t Ein 2/3/i

— j Ein 4j3h — 2 sin 2/3/t — 2j(cos 2/3/t — 1)].

IV. The required equality of and \p, . Although the method of King and Middleton
yields a different expansion parameter in the receiving case from that found by them
for the driven dipole, it is necessary, in order to have a consistent theory for the re-
ceiving dipole, that both expansion parameters be identical. This can be seen from a
comparison of the two equivalent definitions for effective length. In addition to Eq. (30),
effective length may be defined by

d = IosZa/Ei . (36)

*The function Ein (re) is defined in the Appendix.
7S. H. Dike, The effective length of antennas, Tech. Report No. 13, Radiation Laboratory, Johns

Hopkins University, 1951. (Submitted to I.R.E.).
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From (30) and (36) one obtains the interesting equality that

sf - x £ im (37)
Substituting in (37) from (2), (14), and (29), one obtains

2/»(0) _ §sM
irHx i,H2'

This relation is true if ip, = \j/r , because when this is so, H1 = II2 and 2/B(0) does indeed
equal (3g,(h) for all orders of solution. A second relation is possible between \pr and \p,
which satisfies (38), but this relation is dependent upon the order of the solution. This
means that the expansion parameter would be a function of the number of terms retained
in the solutions for the currents. This is obviously undesirable. In any case \pr must
equal \pt for the zero order solution.

This fact constitutes the first difficulty encountered in the King-Middleton method.
It is difficult to say which of the two parameters, \pt or \pr , is the better. It appears
that neither is particularly good.1

V. The behavior of the theory for short dipoles. It was pointed out in Ref. 1 that the
values of gain obtained from Eq. (26) do not reduce in the limit of decreasing /3h to the
value 1.5. One would expect the value 1.5 as being the correct one for finite Q because
for very small I3h the current distribution must be essentially linear. This does not
imply that either the radiation resistance or the effective length should reduce to those
of the indefinitely thin short dipole. For very small /3h, Eq. (26) becomes

«•-!
(2^, - 0 + 3)2

.3# - 2^,(0 - 2 - 2 log 2)]■
0h« 1. (39)

This result is independent of /3h but remains a function of the expansion parameter.
Since for small flh, \pt = 12 — 2, Eq. (39) becomes

"■ "i[< (n - 1)' /3/t « 1. (40).(Q - 2)(0 - 2 + 4 log 2).

This is not 1.5 except for Q —>«>. It is not evident that the difficulty would be
removed by retaining more terms of the series solution. Various values of short dipole
gain can be obtained from (39) by using the expansion parameters of previous authors.
This is shown for 0 = 10 in Table I, where the value of the expansion parameter for
small (ih is given.

TABLE I
Author tp Gt Percent Error

HallSn £2 1.5114 0.76
Gray8 S2 — 2 + log 4 1.4835 1.10
King-Middleton fi — 2 1.4098 6.01

If the parameter ipr is used, where i/\ = 0 — 1 for fih <<C 1, the value of G, at Q = 10 is
1.464 which is an improvement over the use of \pt .

8M. C. Gray, A modification of HalUn's solution of the antenna problem, J. Appl. Phys. IS, 61-65
(1944).
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The fact that the bracket of (39) should be unity in the first-order theory gives

i2 - i(212 — 8 + 4 log 2) + 122 - 612 + 9 = G,

or
i = 12 — 2.6138 ± 0.879 (12 - 2.807)1/2. (41)

Of the two values allowed, the larger is probably the one that should be chosen.
A similar situation results in the value of <r/X2 for very short matched-loaded dipoles.

The theory should reduce to the value 9/16x. In the limit of decreasing f3h, Eq. (33)
for the matched-loaded case becomes

[ UW, ~ 0 + 3)(2i/y - 12 + 3)"|2
L tf(3*« - 212 + 4 + 4 log 2) J ' ( Jy 16tt

If the requirement is made that = \pr then

JL _ 9
X2 ~ 16tt

(2j - 12 + 3)2
.w - 2^(12 - 2 - 2 log 2). (43)

The bracket of (43) is identical to that of (39) leading to the same requirement on \p
given by (41). It appears then that an additional requirement should be imposed on
the expansion parameter that has not previously been considered.

It is also of interest to consider the value of impedance in the limit of very small ph.
The impedance is given by

= V0//„, = -MJLtfirfMV1, (44)
which for fih <K 1, becomes

7 = 7? 4- iY = ~m*>
. R.+j Xa S/3h(2\p, + x) + j(ph)*' (45)

where

x = 2 + 2 log 2 — 12. (46)

Separating real and imaginary parts of (45):

Ra = 20^(/3/i)2(3^ + 2s) (2 + x)~2, (47)
and

Since = 12 — 2 for @h <3C 1,

X = - 60 cio'i
Ph{24,t + xY (48)

= 20 m2 UQ,
Ka 1 + (2 log 2)2/y' (4yj

where

y = 122 + (log 2 - l)(log 2 - 1 + 412), (50)

and

X _-60|~ (12 — 2)2 "Iph Ll2 - 2 + 2 log 2_r 1 j
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Fig. 6. Absorption Gain for Q = 10
- Equation (25) using second-order | Za 12/Ra
■ First-order theory
- Equation (27) using second-order Ra
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Fig. 7. Effective length for Si = 10
 First-order theory
— • — Equation (27) using second-order Ra
  Equation (32) using second-order Za

For a value of \p which satisfies (41), Ra becomes

Ra = 20(l3h)2(2\f/ - Q + 3)2(2^ — 12 + 2 + 2 log 2)'\ (52)

Using ip from (41) for 0 = 10, Ra = 20 (/3/i)2 (0.941). The corresponding value from the
King-Middleton relation (49) is Ra = 20(/3/i)2(0.978). There is a difference of about
four percent between these two values.

The corresponding values of Xa for 0 = 10 are Xa = — (7.375)60/ph for \p satisfying
(41), and X„ = — (6.819)60//3/i for the King-Middleton expression (51). The difference
here is about eight percent.

It is of interest to compare these results with the reactance computed from the static
capacitance between two cylinders placed end to end in air, and separated by a distance
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which is negligible compared with their individual lengths. This reactance is given by9

_ -f(Q - log 12) _ -60(0 - 2.485)
2tt/3 h 0h " (-5dj

For fi = 10, Eq. (53) gives Xa, = — (7.515)60//3/i. This result may be compared with
those obtained from Eq. (48) listed in Table II.

TABLE II
-phXa for Q = 10, (3h « 1

60
Q (Hallen)  7.470
from Eq. (41)   7.375
Q — 2 + log 4 (Gray)  7.246
*pr   7.114
$2 — 2 (King-Middleton)  6.819

VI. The use of the King-Middleton values of impedance. It was thought that im-
proved values of the various antenna properties might be obtained by using the second-
order impedance values of King and Middleton in the expressions for gain, back-scattering
cross section, and effective length. Figure 6 shows the absorption gain, Gt , computed
from the straight first-order theory, and also as computed from Eq. (25) using second-
order values of | Za \2/Ra , and from Eq. (27) using first-order effective length and
second-order Ra . As can be seen from this figure, very different results are obtained
when the King-Middleton values are used. The use of Eq. (27) with second-order Ra
would seem to indicate that the King-Middleton values for the radiation resistance are
too large in the region of /3h — 2, and are too small in the region of /3/i = 3.5. The use
of Eq. (25) with second-order | Za \2/Ra yields results which are certainly contrary to
fact near /3h — 1.5 and (3h — 4.5. The "bulge" in the first-order theory near fih = 2 is
contrary to experimental data and disappears if ipr is used instead of x//,.1

Figure 7 is a comparison of the first-order theory for effective length given by Eq. (31),
the relation of Eq. (32) using second-order Za , and Eq. (27) using second-order Ra and
first-order G, . The use of (32) with second-order Z„ gives results which are unreasonable
near /3h = 1.5 and /3h — 4.5.

Figure 8 shows the back-scattering cross section for matched load according to the
first-order theory and also from Eq. (33) where second-order King-Middleton values
are used for Ze . The latter curve behaves strangely near ph = 1.5. Neither curve
represents experiment, particularly in the region above 0/t = 4.1

These three figures show that it is not permissible to use second-order King-Middleton
values of impedance in first-order formulas. This may be due to the unknown behavior
of the series solution as regards convergence,10 or it may be that the second-order im-
pedance values of King and Middleton are not good. This latter case would imply
that the expansion parameter \f/t can be better chosen.

VII. The problem of choosing the expansion parameter. The integral equation of

9R. W. P. King and C. Harrison, Jr., The impedance of short, long and capacity loaded antennas with a
critical discussion of the antenna problem, J. Appl. Phys., 17, 170 (1944).

10S. Schelkunoff, Concerning HalUn's integral equation for cylindrical antennas, Proc. I.R.E., 33, 872
(1945).
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T

Fig. 8. Back-scattering cross-section for Si = 10, Z^ = Z*
 First-order theory
  Equation (33) using second-order | za \'Ra

Hallen is known to be a sufficiently accurate formulation of the problem. It has been ex-
amined by many workers,11'12'13 and has been shown to contain approximations only to
the order (a/h)2.10 Hall&i proposed an iterative process for solving this equation and ob-
tained a series solution.2 Modified solutions have been proposed by Miss Gray8 and by
King and Middleton.3 These have consisted essentially of modifying the expansion

UD. Middleton and R. W. P. King, The thin cylindrical antenna: a comparison of theories, J. Appl.
Phys. 17, 273-284 (1946).

12L. Brillouin, The antenna problem, Q. Appl. Math. 1, 201-214 (1943).
13S. Schelkunoff, Antenna theory and experiment, J. Appl. Phys. 15, 54-60 (1944).
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Fig. 9. Back-scattering cross-section at ph = 2-ir for Q = 10, ZL — 0, as a function of
expansion parameter

parameter used. Hallen14 claims that such modifications have no mathematical founda-
tion, and this may be so. However, the method of King and Middleton does appear
reasonable from the standpoint of physical reasoning. The choice of a trial function
which is known to be representative of the current distribution in the limit of vanishing
dipole radius seems to have some merit, although the arguments as to why this should
yield a better solution have been attacked by Hallen.15 Nevertheless, if it is thought

14E. Hallen, Admittance diagrams for antennas and the relation between antenna theories, Tech. Report
No. 46, Cruft Laboratory, Harvard Univ., 1948.

15E. Hallen, Traveling waves and unsymmetrically fed antennas, Tech. Report No. 49, Cruft Labora-
tory, Harvard Univ., 1948.
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that such a choice of a trial function is justified, it appears from the foregoing discussion
that consideration must be given to both Eqs. (11) and (19) in making a final choice
of \p. Note that these two expressions are identical at all resonant lengths (fih = 71-/2,
3tt/2, 5tt/2, • • •). Also since xWz) is not predominantly real for the longer lengths, the
final choice of \p may best be a complex value.

Back-scattering cross section appears to be a property of the dipole antenna which
is particularly sensitive to prediction by theory. As an illustration of its sensitivity to
the choice of expansion parameter, Fig. 9 shows the back-scattering cross section at
[ih = 27r, 0 = 10, for the shorted dipole as a function of the expansion parameter. A
factor greater than two exists between the result using the King-Middleton parameter
of about 6 at this length, and the Hall en parameter of 10 in the first-order theory.

VIII. Conclusion. In view of the fact that the series solution of the integral equation
has been studied, criticized, and modified by many authors since Hall en's first paper in
1938, and since a theoiy which can be practically computed does not seem to exist
which adequately predicts the complete behavior of a simple dipole antenna, it appears
perhaps that a new attack on the problem is justified.

It is significant that the results of Van Yleck, et al,16 for the back-scattering cross
section of a shorted dipole agree more closely with experiment than the first-order
solutions of Hallen, King and Middleton, or Miss Gray. Such a comparison is made
in Fig. 16 of Ref. 1. Hallen's recent solution15 for the driven dipole may be an improved
one from the standpoint of gain. Some attempts have been made to solve the integral
equation by variational methods.17'18 Storer's solution fails for /3h greater than 37r/2.
Tai removed this difficulty but his first-order values of Ra at the first resonant length
are still higher than those of King and Middleton. It may be worthwhile to follow
up a suggestion made by Brillouin19 that the known function and the kernel of the in-
tegral equation be expanded in Fourier series with known coefficients, and that the
unknown function for the current be likewise expanded with unknown coefficients.
Term-by-term integration would then lead to a set of simultaneous equations for de-
termination of the coefficients. No published results of such an approach have come to
the author's attention.

APPENDIX

Ein (x) = Cin (x) + j Si (x)

Cin («) = [ 1 ~ ,C0S 1 dt
J o t

Si M = I — dt(*) - [ '
•>0 t

16J. II. Van Vleck, F. Bloch and M. Hamermesh, Theory of radar reflection from wires or thin metallic
strips, J. Appl. Phys. 18, 274 (1947).

17J. E. Storer, Variational solution to the problem of the symmetrical cylindrical antenna, Tech. Report
No. 101, Cruft Laboratory, Harvard Univ., 1950.

18C. T. Tai, A variational solution to the problem of cylindrical antennas, Tech. Report No. 12, SRI
Project No. 188, Stanford Research Institute, 1950.

19L. Brillouin, Antennas for ultra-high frequencies, Electrical Communication 22, 11 (1944).


